|   | 
Details
   web
Records
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Semiclassical geons at particle accelerators Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages (up) 010 - 25pp
Keywords modified gravity; Wormholes; quantum black holes
Abstract We point out that in certain four-dimensional extensions of general relativity constructed within the Palatini formalism stable self-gravitating objects with a discrete mass and charge spectrum may exist. The incorporation of nonlinearities in the electromagnetic field may effectively reduce their mass spectrum by many orders of magnitude. As a consequence, these objects could be within (or near) the reach of current particle accelerators. We provide an exactly solvable model to support this idea.
Address [Omla, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000332711400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1733
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title Cosmology of hybrid metric-Palatini f(X)-gravity Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages (up) 011 - 25pp
Keywords modified gravity; dark energy theory
Abstract A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in terms of the quantity X equivalent to kappa T-2 + R, where T and R are the traces of the stress-energy and Ricci tensors, respectively. The variable X represents the deviation with respect to the field equation trace of general relativity. The cosmological applications of this hybrid metric-Palatini gravitational theory are also explored, and cosmological solutions coming from the scalar-tensor representation of f(X)-gravity are presented. Criteria to obtain cosmic acceleration are discussed and the field equations are analyzed as a dynamical system. Several classes of dynamical cosmological solutions, depending on the functional form of the effective scalar field potential, describing both accelerating and decelerating Universes are explicitly obtained. Furthermore, the cosmological perturbation equations are derived and applied to uncover the nature of the propagating scalar degree of freedom and the signatures these models predict in the large-scale structure.
Address Univ Naples Federico II, Dipartimento Fis, Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000318556200011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1444
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D.
Title Semiclassical geons as solitonic black hole remnants Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages (up) 011 - 10pp
Keywords modified gravity; primordial black holes; Wormholes; quantum field theory on curved space
Abstract We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.
Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000322582000012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1532
Permanent link to this record
 

 
Author Galli, P.; Meessen, P.; Ortin, T.
Title The Freudenthal gauge symmetry of the black holes of N=2, d=4 supergravity Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages (up) 011 - 15pp
Keywords Black Holes; String Duality; Gauge Symmetry; Supergravity Models
Abstract We show that the representation of black-hole solutions in terms of the variables H-M which are harmonic functions in the supersymmetric case is non-unique due to the existence of a local symmetry in the effective action. This symmetry is a continuous (and local) generalization of the discrete Freudenthal transformations initially introduced for the black-hole charges and can be used to rewrite the physical fields of a solution in terms of entirely different-looking functions.
Address [Galli, Pietro] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: Pietro.Galli@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000321374400011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1555
Permanent link to this record
 

 
Author Borja, E.F.; Garay, I.; Vidotto, F.
Title Learning about Quantum Gravity with a Couple of Nodes Type Journal Article
Year 2012 Publication Symmetry Integrability and Geometry-Methods and Applications Abbreviated Journal Symmetry Integr. Geom.
Volume 8 Issue Pages (up) 015 - 44pp
Keywords discrete gravity; canonical quantization; spinors; spinfoam; quantum cosmology
Abstract Loop Quantum Gravity provides a natural truncation of the infinite degrees of freedom of gravity, obtained by studying the theory on a given finite graph. We review this procedure and we present the construction of the canonical theory on a simple graph, formed by only two nodes. We review the U(N) framework, which provides a powerful tool for the canonical study of this model, and a formulation of the system based on spinors. We consider also the covariant theory, which permits to derive the model from a more complex formulation, paying special attention to the cosmological interpretation of the theory.
Address [Borja, Enrique F.; Garay, Inaki] Univ Erlangen Nurnberg, Inst Theoret Phys 3, D-91058 Erlangen, Germany, Email: efborja@theorie3.physik.uni-erlangen.de;
Corporate Author Thesis
Publisher Natl Acad Sci Ukraine, Inst Math Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1815-0659 ISBN Medium
Area Expedition Conference
Notes WOS:000303831400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1018
Permanent link to this record