|   | 
Details
   web
Records
Author Ho, S. et al; de Putter, R.; Mena, O.
Title Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications Type Journal Article
Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 761 Issue 1 Pages (up) 14 - 24pp
Keywords cosmological parameters; dark energy; dark matter; distance scale
Abstract The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg(2), and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg(2) and probes a volume of 3 h(-3) Gpc(3), making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of similar to 15%, with a bin size of delta(l) = 10 on scales of the baryon acoustic oscillations (BAOs; at l similar to 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat Lambda CDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H-0 constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find Omega(Lambda) = 0.73 +/- 0.019 and H-0 to be 70.5 +/- 1.6 s(-1) Mpc(-1) km. For an open Lambda CDM model, when combined with WMAP7 + HST, we find Omega(K) = 0.0035 +/- 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+ SN, we find w = -1.071 +/- 0.078, and H-0 to be 71.3 +/- 1.7 s(-1) Mpc(-1) km, which is competitive with the latest large-scale structure constraints from large spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected power spectra give consistent constraints on cosmological models when compared with pre-systematic correction power spectra in the angular scales of interest. The SDSS-III Data Release 8 (SDSS-III DR8) Angular Clustering Data allow a wide range of investigations into the cosmological model, cosmic expansion (via BAO), Gaussianity of initial conditions, and neutrino masses. Here, we refer to our companion papers for further investigations using the clustering data. Our calculation of the survey selection function, systematics maps, and likelihood function for the COSMOMC package will be released at http://portal.nersc.gov/project/boss/galaxy/photoz/.
Address [Ho, Shirley; White, Martin; Schlegel, David J.; Seljak, Uros; Reid, Beth; Ross, Nicholas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA, Email: cwho@lbl.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000311748800014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1263
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.
Title Dark radiation sterile neutrino candidates after Planck data Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages (up) 018 - 13pp
Keywords cosmological neutrinos; neutrino properties; neutrino theory; dark energy theory
Abstract Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62(-0.48)(+0.50) at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N-eff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m(nu,sterile)(eff) < 0.36 eV and 3.14 < N-eff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N-eff < 4.43 and m(nu,sterile)(eff) < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. Sigma m(nu) similar to 0.06 eV. These values compromise the viability of the (3 + 2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3 + 1) massive sterile neutrino scenario, we find m(nu,sterile)(eff) < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.
Address [Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy, Email: eleonora.divalentino@roma1.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000327843900019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1672
Permanent link to this record
 

 
Author Cervantes-Cota, J.L.; de Putter, R.; Linder, E.V.
Title Induced gravity and the attractor dynamics of dark energy/dark matter Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages (up) 019 - 20pp
Keywords modified gravity; dark energy theory
Abstract Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity.
Address [Cervantes-Cota, Jorge L.] Inst Nacl Invest Nucl, Dept Fis, Mexico City 11801, DF, Mexico, Email: jorge.cervantes@inin.gob.mx
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000286930700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 533
Permanent link to this record
 

 
Author Yang, W.Q.; Pan, S.; Mena, O.; Di Valentino, E.
Title On the dynamics of a dark sector coupling Type Journal Article
Year 2023 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume 40 Issue Pages (up) 19-40
Keywords Dark matter; Dark energy; Interacting cosmologies; Cosmological observations
Abstract Interacting dark energy models may play a crucial role in explaining several important observational issues in modern cosmology and also may provide a solution to current cosmological tensions. Since the phenomenology of the dark sector could be extremely rich, one should not restrict the interacting models to have a coupling parameter which is constant in cosmic time, rather allow for its dynamical behaviour, as it is common practice in the literature when dealing with other dark energy properties, as the dark energy equation of state. We present here a compendium of the current cosmological constraints on a large variety of interacting models, investigating scenarios where the coupling parameter of the interaction function and the dark energy equation of state can be either constant or dynamical. For the most general schemes, in which both the coupling parameter of the interaction function and the dark energy equation of state are dynamical, we find 95% CL evidence for a dark energy component at early times and slightly milder evidence for a dynamical dark coupling for the most complete observational data set exploited here, which includes CMB, BAO and Supernova Ia measurements. Interestingly, there are some cases where a dark energy component different from the cosmological constant case at early times together with a coupling different from zero today, can alleviate both the H-0 and S-8 tension for the full dataset combination considered here. Due to the energy exchange among the dark sectors, the current values of the matter energy density and of the clustering parameter sigma(8) are shifted from their ACDM-like values. This fact makes future surveys, especially those focused on weak lensing measurements, unique tools to test the nature and the couplings of the dark energy sector. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:001089001500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5761
Permanent link to this record
 

 
Author Di Valentino, E.; Mena, O.
Title A fake interacting dark energy detection? Type Journal Article
Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 500 Issue 1 Pages (up) L22-L26
Keywords cosmic background radiation; cosmological parameters; dark energy
Abstract Models involving an interaction between the dark matter and the dark energy sectors have been proposed to alleviate the long-standing Hubble constant tension. In this paper, we analyse whether the constraints and potential hints obtained for these interacting models remain unchanged when using simulated Planck data. Interestingly, our simulations indicate that a dangerous fake detection for a non-zero interaction among the dark matter and the dark energy fluids could arise when dealing with current cosmic microwave background (CMB) Planck measurements alone. The very same hypothesis is tested against future CMB observations, finding that only cosmic variance limited polarization experiments, such as PICO or PRISM, could be able to break the existing parameter degeneracies and provide reliable cosmological constraints. This paper underlines the extreme importance of confronting the results arising from data analyses with those obtained with simulations when extracting cosmological limits within exotic cosmological scenarios.
Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000599143200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4665
Permanent link to this record