|   | 
Details
   web
Records
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Neutrino predictions from a left-right symmetric flavored extension of the standard model Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages (up) 065 - 24pp
Keywords Beyond Standard Model; Discrete Symmetries; Neutrino Physics; Quark Masses and SM Parameters
Abstract We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.
Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000459168900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3917
Permanent link to this record
 

 
Author Calibbi, L.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.
Title Muon and electron g – 2 and lepton masses in flavor models Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages (up) 087 - 23pp
Keywords Precision QED; Beyond Standard Model; Effective Field Theories; Quark Masses and SM Parameters
Abstract The stringent experimental bound on μ-> e gamma is compatible with a simultaneous and sizable new physics contribution to the electron and muon anomalous magnetic moments (g – 2)(l) (l = e, mu), only if we assume a non-trivial flavor structure of the dipole operator coefficients. We propose a mechanism in which the realization of the (g – 2)(l) correction is manifestly related to the mass generation through a flavor symmetry. A radiative flavon correction to the fermion mass gives a contribution to the anomalous magnetic moment. In this framework, we introduce a chiral enhancement from a non-trivial O(1) quartic coupling of the scalar potential. We show that the muon and electron anomalies can be simultaneously explained in a vast region of the parameter space with predicted vector-like mediators of masses as large as M chi is an element of [0.6, 2.5] TeV.
Address [Calibbi, Lorenzo] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China, Email: calibbi@nankai.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000542705000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4443
Permanent link to this record
 

 
Author Baron, R.; Boucaud, P.; Dimopoulos, P.; Frezzotti, R.; Palao, D.; Rossi, G.; Farchioni, F.; Munster, G.; Sudmann, T.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Lubicz, V.; Simula, S.; Michael, C.; Scorzato, L.; Shindler, A.; Urbach, C.; Wenger, U.
Title Light meson physics from maximally twisted mass lattice QCD Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages (up) 097 - 41pp
Keywords Lattice QCD; Quark Masses and SM Parameters; QCD
Abstract We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N-f = 2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 less than or similar to m(PS) less than or similar to 650MeV we control the major systematic effects of our calculation. This enables us to confront our N-f = 2 data with SU(2) chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass.
Address [Baron, Remi; Boucaud, Phillip] Univ Paris 11, Phys Theor Lab, Ctr Orsay, F-91405 Orsay, France, Email: remi.baron@centraliens.net
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000282367800036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 348
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Naviliat-Cuncic, O.
Title Comprehensive analysis of beta decays within and beyond the Standard Model Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages (up) 126 - 36pp
Keywords Effective Field Theories; Beyond Standard Model; Quark Masses and SM Parameters
Abstract Precision measurements in allowed nuclear beta decays and neutron decay are reviewed and analyzed both within the Standard Model and looking for new physics. The analysis incorporates the most recent experimental and theoretical developments. The results are interpreted in terms of Wilson coefficients describing the effective interactions between leptons and nucleons (or quarks) that are responsible for beta decay. New global fits are performed incorporating a comprehensive list of precision measurements in neutron decay, superallowed 0(+)-> 0(+) transitions, and other nuclear decays that include, for the first time, data from mirror beta transitions. The results confirm the V-A character of the interaction and translate into updated values for V-ud and g(A) at the 10(-4) level. We also place new stringent limits on exotic couplings involving left-handed and right-handed neutrinos, which benefit significantly from the inclusion of mirror decays in the analysis.
Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: adam.falkowski@ijclab.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000640519700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4804
Permanent link to this record
 

 
Author Lopez-Ibañez, M.L.; Melis, A.; Jay Perez, M.; Vives, O.
Title Slepton non-universality in the flavor-effective MSSM Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages (up) 162 - 27pp
Keywords Quark Masses and SM Parameters; Supersymmetric Standard Model; Super-symmetry Breaking; Supersymmetric Effective Theories
Abstract Supersymmetric theories supplemented by an underlying flavor-symmetry G(f) provide a rich playground for model building aimed at explaining the flavor structure of the Standard Model. In the case where supersymmetry breaking is mediated by gravity, the soft-breaking Lagrangian typically exhibits large tree-level flavor violating e ff ects, even if it stems from an ultraviolet flavor-conserving origin. Building on previous work, we continue our phenomenological analysis of these models with a particular emphasis on leptonicflavor observables. We consider three representative models which aim to explain the flavor structure of the lepton sector, with symmetry groups G(f) = Delta (27), A(4); and S-3.
Address [Luisa Lopez-Ibanez, M.; Melis, Aurora; Jay Perez, M.; Vives, Oscar] Univ Valencia, Dept Fis Teor, Dr Moliner 50, Burjassot, Valencia, Spain, Email: m.luisa.lopez-ibanez@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000416356500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3382
Permanent link to this record