Zhang, G. et al, Algora, A., Nacher, E., Orrigo, S. E. A., Perez-Vidal, R. M., & Rubio, B. (2025). Approaching 100Sn: Structural evolution in 98,100Cd via lifetime measurements. Phys. Lett. B, 863, 139378–7pp.
Abstract: The lifetimes of low-lying excited states below the 8(+) seniority isomer were directly measured using fast timing detectors in the neutron-deficient isotopes Cd-98,Cd-100. This experiment was conducted with the DEcay SPECtroscopy (DESPEC) setup at GSI, where the ions of interest were produced via a fragmentation reaction and identified using the FRagment Separator (FRS) before being implanted in the AIDA active stopper system, and the gamma rays emitted during the de-excitation of isomeric states were detected by the LaBr3 FATIMA Array. The newly deduced values for the reduced transition probabilities were compared with shell-model calculations using different interactions and effective charges. The results indicate that, while Cd-98 aligns well with a seniority scheme description, in Cd-100 the transition strengths among low-lying states are not fully reproduced, and the nature of these states remains an open problem within the present theoretical description. Ultimately, a key element in the description of this region, crucial for nuclear physics and astrophysics, appears to be the proton-neutron term of the nuclear effective interaction.
|
Goigoux, T. et al, Algora, A., Guadilla, V., Montaner-Piza, A., Morales, A. I., Orrigo, S. E. A., et al. (2016). Two-Proton Radioactivity of Kr-67. Phys. Rev. Lett., 117(16), 162501–6pp.
Abstract: In an experiment with the BigRIPS separator at the RIKEN Nishina Center, we observed two-proton (2p) emission from Kr-67. At the same time, no evidence for 2p emission of Ge-59 and Se-63, two other potential candidates for this exotic radioactivity, could be observed. This observation is in line with Q value predictions which pointed to Kr-67 as being the best new candidate among the three for two-proton radioactivity. Kr-67 is only the fourth 2p ground-state emitter to be observed with a half-life of the order of a few milliseconds. The decay energy was determined to be 1690(17) keV, the 2p emission branching ratio is 37(14)%, and the half-life of Kr-67 is 7.4(30) ms.
|
Algora, A. et al, Rubio, B., Agramunt, J., Guadilla, V., Montaner-Piza, A., Morales, A. I., et al. (2025). Isospin Symmetry Breaking in the 71Kr and 71Br Mirror System. Phys. Rev. Lett., 134(16), 162502–9pp.
Abstract: Isospin symmetry is a fundamental concept in nuclear physics. Even though isospin symmetry is partially broken, it holds approximately for most nuclear systems, which makes exceptions very interesting from the nuclear structure perspective. In this framework, it is expected that the spins and parities of the ground states of mirror nuclei should be the same, in particular for the simplest systems where a proton is exchanged with a neutron or vice versa. In this Letter, we present evidence that this assumption is broken in the mirror pair 71Br and 71Kr system. Our conclusions are based on a high-statistics /3 decay study of 71Kr and on state-of-the-art shell model calculations. In our work, we also found evidence of a new state in 70Se, populated in the /3-delayed proton emission process which can be interpreted as the long sought coexisting 0 & thorn; state.
|
Mistry, A. K. et al, Tain, J. L., Agramunt, J., Algora, A., Guadilla, V., Morales, A. I., et al. (2022). The DESPEC setup for GSI and FAIR. Nucl. Instrum. Methods Phys. Res. A, 1033, 166662–18pp.
Abstract: The DEcay SPECtroscopy (DESPEC) setup for nuclear structure investigations was developed and commissioned at GSI, Germany in preparation for a full campaign of experiments at the FRS and Super-FRS. In this paper, we report on the first employment of the setup in the hybrid configuration with the AIDA implanter coupled to the FATIMA LaBr3(Ce) fast-timing array, and high-purity germanium detectors. Initial results are shown from the first experiments carried out with the setup. An overview of the setup and function is discussed, including technical advancements along the path.
|
Singha, M., Yokoyama, R., Grzywacz, R., Keeler, A., King, T. T., Agramunt, J., et al. (2025). YSO implantation detector for beta-delayed neutron spectroscopy. Nucl. Instrum. Methods Phys. Res. A, 1073, 170239–14pp.
Abstract: A segmented-scintillator-based implantation detector was developed to study the energy distribution of /1- delayed neutrons emitted from exotic isotopes. The detector comprises a 34 x 34 YSO scintillator coupled to an 8 x 8 anode Position-Sensitive Photo-Multiplier Tube (PSPMT) via a tapered light guide. The detector was used at RIBF, RIKEN for time-of-flight-based neutron spectroscopy measurement in the 78Ni region. The detector provides the position and timing resolution necessary for ion-beta correlations and time of flight measurements. The detector provides a high similar to 80% beta-detection efficiency and a sub-nanosecond timing resolution. This contribution discusses the details of the design, operation, implementation, and analysis developed to obtain neutron time-of-flight spectrum and the analysis methods in the context of neutron-rich nuclei in the 78Ni region.
|