toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Valentino, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Can interacting dark energy solve the H-0 tension? Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 4 Pages (up) 043503 - 11pp  
  Keywords  
  Abstract The answer is yes. We indeed find that interacting dark energy can alleviate the current tension on the value of the Hubble constant H-0 between the cosmic microwave background anisotropies constraints obtained from the Planck satellite and the recent direct measurements reported by Riess et al. 2016. The combination of these two data sets points toward a nonzero dark matter-dark energy coupling. at more than two standard deviations, with xi = -0.26(-0.12)(+0.16) at 95% C.L., i.e. with a moderate evidence for interacting dark energy with an odds ratio of 6:1 respect to a non interacting cosmological constant. However the H-0 tension is better solved when the equation of state of the interacting dark energy component is allowed to freely vary, with a phantomlike equation of state w = -1.185 +/- 0.064 (at 68% C.L.), ruling out the pure cosmological constant case, w = -1, again at more than two standard deviations. When Planck data are combined with external datasets, as BAO, JLA Supernovae Ia luminosity distances, cosmic shear or lensing data, we find perfect consistency with the cosmological constant scenario and no compelling evidence for a dark matter-dark energy coupling.  
  Address [Di Valentino, Eleonora] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France, Email: eleonora.di_valentino@iap.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427529900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3517  
Permanent link to this record
 

 
Author Barenboim, G.; Kinney, W.H.; Park, W.I. url  doi
openurl 
  Title Resurrection of large lepton number asymmetries from neutrino flavor oscillations Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 4 Pages (up) 043506 - 6pp  
  Keywords  
  Abstract We numerically solve the evolution equations of neutrino three-flavor density matrices, and show that, even if neutrino oscillations mix neutrino flavors, large lepton number asymmetries are still allowed in certain limits by big bang nucleosynthesis.  
  Address [Barenboim, Gabriela; Park, Wan-Il] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000393512400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2952  
Permanent link to this record
 

 
Author Giusarma, E.; Di Valentino, E.; Lattanzi, M.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Relic neutrinos, thermal axions, and cosmology in early 2014 Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 4 Pages (up) 043507 - 17pp  
  Keywords  
  Abstract We present up-to-date cosmological bounds on the sum of active neutrino masses as well as on extended cosmological scenarios with additional thermal relics, as thermal axions or sterile neutrino species. Our analyses consider all the current available cosmological data in the beginning of year 2014, including the very recent and most precise baryon acoustic oscillation measurements from the Baryon Oscillation Spectroscopic Survey. In the minimal three-active-neutrino scenario, we find Sigma m(nu) < 0.22 eV at 95% C.L. from the combination of cosmic microwave background (CMB), baryon acoustic oscillation, and Hubble Space Telescope measurements of the Hubble constant. A nonzero value for the sum of the three active neutrino masses of similar to 0.3 eV is significantly favored at more than three standard deviations when adding the constraints on s 8 and Om from the Planck cluster catalog on galaxy number counts. This preference for nonzero thermal relic masses disappears almost completely in both the thermal axion and massive sterile neutrino schemes. Extra light species contribute to the effective number of relativistic degrees of freedom, parametrized via N-eff. We found that when the recent detection of B mode polarization from the BICEP2 experiment is considered, an analysis of the combined CMB data in the framework of LCDM + r models gives N-eff = 3.90 +/- 0.42, suggesting the presence of an extra relativistic relic at more than 95% C.L. from CMB-only data.  
  Address [Giusarma, Elena; Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347985100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2075  
Permanent link to this record
 

 
Author Archidiacono, M.; Giusarma, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Dark radiation in extended cosmological scenarios Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 4 Pages (up) 043509 - 7pp  
  Keywords  
  Abstract Recent cosmological data have provided evidence for a “dark” relativistic background at high statistical significance. Parameterized in terms of the number of relativistic degrees of freedom N-eff, however, the current data seem to indicate a higher value than the one expected in the standard scenario based on three active neutrinos. This dark radiation component can be characterized not only by its abundance but also by its clustering properties, as its effective sound speed and its viscosity parameter. It is therefore crucial to study the correlations among the dark radiation properties and key cosmological parameters, as the dark energy equation of state or the running of the scalar spectral index, with current and future cosmic microwave background data. We find that dark radiation with viscosity parameters different from their standard values may be misinterpreted as an evolving dark energy component or as a running spectral index in the power spectrum of primordial fluctuations.  
  Address [Archidiacono, Maria; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307276500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1122  
Permanent link to this record
 

 
Author Gerbino, M.; Freese, K.; Vagnozzi, S.; Lattanzi, M.; Mena, O.; Giusarma, E.; Ho, S. url  doi
openurl 
  Title Impact of neutrino properties on the estimation of inflationary parameters from current and future observations Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 4 Pages (up) 043512 - 22pp  
  Keywords  
  Abstract We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the n(s)/r plane, where n(s) is the scalar spectral index and r is the tensor-to-scalar ratio. We study the following neutrino properties: (i) the total neutrino mass M-i = Sigma(i)m(i) (where the index i = 1, 2, 3 runs over the three neutrino mass eigenstates); (ii) the number of relativistic degrees of freedom N-eff at the time of recombination; and (iii) the neutrino hierarchy. Whereas previous literature assumed three degenerate neutrino masses or two massless neutrino species (approximations that clearly do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce < 1 sigma shift of the probability contours in the n(s)/r plane with both current or upcoming data. We find that the choice of neutrino hierarchy (normal, inverted, or degenerate) has a negligible impact. However, the minimal cutoff on the total neutrino mass M-v,M-min = 0 that accompanies previous works using the degenerate hierarchy does introduce biases in the n(s)/r plane and should be replaced by M-v,M-min = 0.059 eV as required by oscillation data. Using current cosmic microwave background (CMB) data from Planck and Bicep/Keck, marginalizing over the total neutrino mass M-v and over r can lead to a shift in the mean value of ns of similar to 0.3 sigma toward lower values. However, once baryon acoustic oscillation measurements are included, the standard contours in the n(s)/r plane are basically reproduced. Larger shifts of the contours in the n(s)/r plane (up to 0.8 sigma) arise for nonstandard values of N-eff. We also provide forecasts for the future CMB experiments Cosmic Origins Explorer (COrE, satellite) and Stage-IV (ground-based) and show that the incomplete knowledge of neutrino properties, taken into account by a marginalization over M-v, could induce a shift of similar to 0.4 sigma toward lower values in the determination of ns (or a similar to 0.8 sigma shift if one marginalizes over N-eff). Comparison to specific inflationary models is shown. Imperfect knowledge of neutrino properties must be taken into account properly, given the desired precision in determining whether or not inflationary models match the future data.  
  Address [Gerbino, Martina; Freese, Katherine; Vagnozzi, Sunny] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, SE-10691 Stockholm, Sweden, Email: martina.gerbino@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427057900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3514  
Permanent link to this record
 

 
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L. url  doi
openurl 
  Title Revising the observable consequences of slow-roll inflation Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 4 Pages (up) 043514 - 14pp  
  Keywords  
  Abstract We study the generation of primordial perturbations in a (single-field) slow-roll inflationary Universe. In momentum space, these (Gaussian) perturbations are characterized by a zero mean and a nonzero variance Delta(2) (k, t). However, in position space the variance diverges in the ultraviolet. The requirement of a finite variance in position space forces one to regularize Delta(2) (k, t). This can (and should) be achieved by proper renormalization in an expanding Universe in a unique way. This affects the predicted scalar and tensorial power spectra (evaluated when the modes acquire classical properties) for wavelengths that today are at observable scales. As a consequence, the imprint of slow-roll inflation on the cosmic microwave background anisotropies is significantly altered. We find a nontrivial change in the consistency condition that relates the tensor-to-scalar ratio r to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n(t) = 0, is now compatible with a nonzero ratio r approximate to 0.12 +/- 0.06, which is forbidden by the standard prediction (r = -8n(t)). The influence of relic gravitational waves on the cosmic microwave background may soon come within the range of planned measurements, offering a nontrivial test of the new predictions.  
  Address [Agullo, Ivan; Olmo, Gonzalo J.; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA, Email: ivan.agullo@uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275898500028 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 479  
Permanent link to this record
 

 
Author Giusarma, E.; de Putter, R.; Mena, O. url  doi
openurl 
  Title Testing standard and nonstandard neutrino physics with cosmological data Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 4 Pages (up) 043515 - 9pp  
  Keywords  
  Abstract Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) < 0.32 eV at 95% C.L. When nonstandard neutrino scenarios with N-eff massless or massive neutrino species are examined, power spectrum shape measurements provide slightly better bounds than the BAO signal only, due to the breaking of parameter degeneracies. Cosmic microwave background data from high multipoles from the South Pole Telescope turns out to be crucial for extracting the number of effective neutrino species. Recent baryon oscillation spectroscopic survey data combined with cosmic microwave background and Hubble Space Telescope measurements give N-eff = 3.66(-0.21-0.69)(+0.20+0.73) in the massless neutrino scenario, and similar results are obtained in the massive case. The evidence for extra radiation N-eff > 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude.  
  Address [Giusarma, Elena; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314765800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1326  
Permanent link to this record
 

 
Author Kraiselburd, L.; Castillo, F.L.; Mosquera, M.E.; Vucetich, H. url  doi
openurl 
  Title Magnetic contributions in Bekenstein type models Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 4 Pages (up) 043526 - 14pp  
  Keywords  
  Abstract In this work, we analyze the spatial and time variation of the fine structure constant (alpha) upon the theoretical framework developed by Bekenstein (Phys. Rev. D 66, 123514 (2002)). We have computed the field psi related to alpha at first order of the weak-field approximation and have also improved the estimation of the nuclear magnetic energy and, therefore, their contributions to the source term in the equation of motion of psi. We obtained that the results are similar to the ones published in L. Kraiselburd and H. Vucetich, Int. J. Mod. Phys. E 20, 101 (2011) which were computed using the zero order of the approximation, showing that one can neglect the first order contribution to the variation of the fine structure constant. Through the comparison between our theoretical results and the observational data of the Eotvos-type experiments or the time variation of alpha over the cosmological time scale, we set constraints on the free parameter of the Bekenstein model, namely the Bekenstein length.  
  Address [Kraiselburd, Lucila; Vucetich, Hector] Univ Nacl La Plata, Fac Ciencias Astron & Geofis, Grp Astrofis Relatividad & Cosmol, Paseo del Bosque S-N, RA-1900 La Plata, Buenos Aires, Argentina, Email: lkrai@fcaglp.unlp.edu.ar;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000425744000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3494  
Permanent link to this record
 

 
Author Antusch, S.; Figueroa, D.G.; Marschall, K.; Torrenti, F. url  doi
openurl 
  Title Characterizing the postinflationary reheating history: Single daughter field with quadratic-quadratic interaction Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 4 Pages (up) 043532 - 36pp  
  Keywords  
  Abstract We study the evolution of the energy distribution and equation of state of the Universe from the end of inflation until the onset of either radiation domination (RD) or a transient period of matter domination (MD). We use both analytical techniques and lattice simulations. We consider two-field models where the inflaton (/) has a monomial potential after inflation V((/)) proportional to i(/) – vip (p 4, and of order similar to 50% for p 4. The system goes to MD at late times for p = 2, while it goes to RD for p > 2. In the later case, we can calculate exactly the number of e-folds until RD as a function of g2, and hence predict accurately inflationary observables like the scalar tilt ns and the tensor-to-scalar ratio r. In the scenario (ii), the energy is always transferred completely to X for p > 2, as long as its effective mass m2X = g2((/) – v)2 is not negligible. For p = 2, the final ratio between the energy densities of X and (/) depends strongly on g2. For all p > 2, the system always goes to MD at late times.  
  Address [Antusch, Stefan; Marschall, Kenneth; Torrenti, Francisco] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000767129500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5173  
Permanent link to this record
 

 
Author Di Valentino, E.; Giusarma, E.; Lattanzi, M.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Axion cold dark matter: Status after Planck and BICEP2 Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 4 Pages (up) 043534 - 11pp  
  Keywords  
  Abstract We investigate the axion dark matter scenario (ADM), in which axions account for all of the dark matter in the Universe, in light of the most recent cosmological data. In particular, we use the Planck temperature data, complemented by WMAP E-polarization measurements, as well as the recent BICEP2 observations of B-modes. Baryon acoustic oscillation data, including those from the baryon oscillation spectroscopic survey, are also considered in the numerical analyses. We find that, in the minimal ADM scenario and for Delta(QCD) = 200 MeV, the full data set implies that the axion mass m(a) = 82.2 +/- 1.1 μeV [corresponding to the Peccei-Quinn symmetry being broken at a scale f(a) = (7.54 +/- 0.10) x 10(10) GeV], or m(a) = 76.6 +/- 2.6 μeV [f(a) = (8.08 +/- 0.27) x 10(10) GeV] when we allow for a nonstandard effective number of relativistic species N-eff. We also find a 2 sigma preference for N-eff > 3.046. The limit on the sum of neutrino masses is Sigma m(v) < 0.25 eV at 95% C.L. for N-eff = 3.046, or Sigma m(v) < 0.47 eV when N-eff is a free parameter. Considering extended scenarios where either the dark energy equation-of-state parameter w, the tensor spectral index n(t), or the running of the scalar index dn(s)/d ln k is allowed to vary does not change significantly the axion mass-energy density constraints. However, in the case of the full data set exploited here, there is a preference for a nonzero tensor index or scalar running, driven by the different tensor amplitudes implied by the Planck and BICEP2 observations. We also study the effect on our estimates of theoretical uncertainties, in particular the imprecise knowledge of the QCD scale Delta(QCD), in the calculation of the temperature-dependent axion mass. We find that in the simplest ADM scenario the Planck + WP data set implies that the axion mass m(a) = 63.7 +/- 1.2 μeV for Delta(QCD) = 400 MeV. We also comment on the possibility that axions do not make up for all the dark matter, or that the contribution of string-produced axions has been grossly underestimated; in that case, the values that we find for the mass can conservatively be considered as lower limits. Dark matter axions with mass in the 60-80 μeV (corresponding to an axion-photon coupling G(a gamma gamma) similar to 10(-14) GeV-1) range can, in principle, be detected by looking for axion-to-photon conversion occurring inside a tunable microwave cavity permeated by a high-intensity magnetic field, and operating at a frequency nu similar or equal to 15-20 GHz. This is out of the reach of current experiments like the axion dark matter experiment (limited to a maximum frequency of a few GHzs), but is, on the other hand, within the reach of the upcoming axion dark matter experiment-high frequency experiment that will explore the 4-40 GHz frequency range and then be sensitive to axion masses up to similar to 160 μeV.  
  Address [Di Valentino, Eleonora; Giusarma, Elena; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340890100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1893  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva