Addazi, A., Ricciardi, G., Scarlatella, S., Srivastava, R., & Valle, J. W. F. (2022). Interpreting B anomalies within an extended 331 gauge theory. Phys. Rev. D, 106(3), 035030–14pp.
Abstract: In light of the recent R-K(*) data on neutral current flavor anomalies in B -> K-(*())l(+)l(-) decays, we reexamine their quantitative interpretation in terms of an extended 331 gauge theory framework. We achieve this by adding two extra lepton species with novel 331 charges, while ensuring that the model remains anomaly-free. In contrast to the canonical 331 models, the gauge charges of the first and second lepton families differ from each other, allowing lepton-flavor universality violation. We further expand the model by adding the neutral fermions required to provide an adequate description for small neutrino masses.
|
Elor, G., Escudero, M., & Nelson, A. E. (2019). Baryogenesis and dark matter from B mesons. Phys. Rev. D, 99(3), 035031–18pp.
Abstract: We present a new mechanism of baryogenesis and dark matter production in which both the dark matter relic abundance and the baryon asymmetry arise from neutral B meson oscillations and subsequent decays. This setup is testable at hadron colliders and B factories. In the early universe, decays of a long lived particle produce B mesons and antimesons out of thermal equilibrium. These mesons/antimesons then undergo CP violating oscillations before quickly decaying into visible and dark sector particles. Dark matter will be charged under the baryon number so that the visible sector baryon asymmetry is produced without violating the total baryon number of the Universe. The produced baryon asymmetry will be directly related to the leptonic charge asymmetry in neutral B decays: an experimental observable. Dark matter is stabilized by an unbroken discrete symmetry, and proton decay is simply evaded by kinematics. We will illustrate this mechanism with a model that is unconstrained by dinucleon decay, does not require a high reheat temperature, and would have unique experimental signals-a positive leptonic asymmetry in B meson decays, a new decay of B mesons into a baryon and missing energy, and a new decay of b-flavored baryons into mesons and missing energy. These three observables are testable at current and upcoming collider experiments, allowing for a distinct probe of this mechanism.
|
Fileviez Perez, P., Gross, A., & Murgui, C. (2018). Seesaw scale, unification, and proton decay. Phys. Rev. D, 98(3), 035032–10pp.
Abstract: We investigate a simple realistic grand unified theory based on the SU(5) gauge symmetry, which predicts an upper bound on the proton decay lifetime for the channels p -> K+(nu) over bar and p -> pi(+)(nu) over bar, i.e., tau (p -> K+(nu) over bar) less than or similar to 3.4 x 10(35) and tau(p -> pi(+)(nu) over bar) less than or similar to 1.7 x 10(34) years, respectively. In this context, the neutrino masses are generated through the type I and type III seesaw mechanisms, and one predicts that the field responsible for type III seesaw must be light with a mass below 500 TeV. We discuss the testability of this theory at current and future proton decay experiments.
|
Anamiati, G., De Romeri, V., Hirsch, M., Ternes, C. A., & Tortola, M. (2019). Quasi-Dirac neutrino oscillations at DUNE and JUNO. Phys. Rev. D, 100(3), 035032–12pp.
Abstract: Quasi-Dirac neutrinos are obtained when the Lagrangian density of a neutrino mass model contains both Dirac and Majorana mass terms, and the Majorana terms are sufficiently small. This type of neutrino introduces new mixing angles and mass splittings into the Hamiltonian, which will modify the standard neutrino oscillation probabilities. In this paper, we focus on the case where the new mass splittings are too small to be measured, but new angles and phases are present. We perform a sensitivity study for this scenario for the upcoming experiments DUNE and JUNO, finding that they will improve current bounds on the relevant parameters. Finally, we also explore the discovery potential of both experiments, assuming that neutrinos are indeed quasi-Dirac particles.
|
Fonseca, R. M., & Hirsch, M. (2017). Gauge vectors and double beta decay. Phys. Rev. D, 95(3), 035033–14pp.
Abstract: We discuss contributions to neutrinoless double beta (0 nu beta beta) decay involving vector bosons. The starting point is a list of all possible vector representations that may contribute to 0 nu beta beta decay via d = 9 or d = 11 operators at tree level. We then identify gauge groups which contain these vectors in the adjoint representation. Even though the complete list of vector fields that can contribute to 0 nu beta beta up to d = 11 is large (a total of 46 vectors), only a few of them can be gauge bosons of phenomenologically realistic groups. These latter cases are discussed in some more detail, and lower (upper) limits on gauge boson masses (mixing angles) are derived from the absence of 0 nu beta beta decay.
|
Cepedello, R., Escribano, P., & Vicente, A. (2023). Neutrino masses, flavor anomalies, and muon g-2 from dark loops. Phys. Rev. D, 107(3), 035034–6pp.
Abstract: The lepton sector of the Standard Model is at present haunted by several intriguing anomalies, including an emerging pattern of deviations in b ? sll processes, with hints of lepton flavor universality violation, and a discrepancy in the muon anomalous magnetic moment. More importantly, it cannot explain neutrino oscillation data, which necessarily imply the existence of nonzero neutrino masses and lepton mixings. We propose a model that accommodates all the aforementioned anomalies, induces neutrino masses and provides a testable dark matter candidate. This is achieved by introducing a dark sector contributing to the observables of interest at the 1-loop level. Our setup provides a very economical explanation to all these open questions in particle physics and is compatible with the current experimental constraints.
|
Barenboim, G., Martinez-Mirave, P., Ternes, C. A., & Tortola, M. (2023). Neutrino CPT violation in the solar sector. Phys. Rev. D, 108(3), 035039–10pp.
Abstract: In this paper, we place new bounds on CPT violation in the solar neutrino sector analyzing the results from solar experiments and KamLAND. We also discuss the sensitivity of the next-generation experiments DUNE and Hyper-Kamiokande, which will provide accurate measurements of the solar neutrino oscillation parameters. The joint analysis of both experiments will further improve the precision due to cancellations in the systematic uncertainties regarding the solar neutrino flux. In combination with the next-generation reactor experiment JUNO, the bound on CPT violation in the solar sector could be improved by 1 order of magnitude in comparison with current constraints. The distinguishability among CPT-violating neutrino oscillations and neutrino nonstandard interactions in the solar sector is also addressed.
|
Fileviez Perez, P., Murgui, C., & Plascencia, A. D. (2019). Neutrino-dark matter connections in gauge theories. Phys. Rev. D, 100(3), 035041–14pp.
Abstract: We discuss the connection between the origin of neutrino masses and the properties of dark matter candidates in the context of gauge extensions of the Standard Model. We investigate minimal gauge theories for neutrino masses where the neutrinos arc predicted to be Dirac or Majorana fermions. We find that the upper bound on the effective number of relativistic species provides a strong constraint in the scenarios with Dirac neutrinos. In the context of theories where the lepton number is a local gauge symmetry spontaneously broken at the low scale, the existence of dark matter is predicted from the condition of anomaly cancellation. Applying the cosmological bound on the dark matter relic density, we find an upper bound on the symmetry breaking scale in the multi-TeV region. These results imply that we could test simple gauge theories for neutrino masses at current or future experiments.
|
Botella, F. J., Cornet-Gomez, F., & Nebot, M. (2018). Flavor conservation in two-Higgs-doublet models. Phys. Rev. D, 98(3), 035046–25pp.
Abstract: In extensions of the Standard Model with two Higgs doublets, flavor-changing Yukawa couplings of the neutral scalars may be present at tree level. In this work, we consider the most general scenario in which those flavor-changing couplings are absent. We revise the conditions that the Yukawa coupling matrices must obey for such general flavour conservation (gFC) and study the one-loop renormalization group evolution of such conditions in both the quark and lepton sectors. We show that gFC in the leptonic sector is one-loop stable under the renormalization group evolution, and in the quark sector, we present some new Cabibbo-like solution also one-loop stable under renormalization group evolution. At a phenomenological level, we obtain the regions for the different gFC parameters that are allowed by the existing experimental constraints related to the 125 GeV Higgs.
|
de Anda, F. J., Medina, O., Valle, J. W. F., & Vaquera-Araujo, C. A. (2023). Revamping Kaluza-Klein dark matter in an orbifold theory of flavor. Phys. Rev. D, 108(3), 035046–11pp.
Abstract: We suggest a common origin for dark matter, neutrino mass and family symmetry within the orbifold theory proposed in [Phys. Lett. B 801, 135195 (2020); Phys. Rev. D 101, 116012 (2020)]. Flavor physics is described by an A(4) family symmetry that results naturally from compactification. Weakly interacting massive particle dark matter emerges from the first Kaluza-Klein excitation of the same scalar that drives family symmetry breaking and neutrino masses through the inverse seesaw mechanism. In addition to the “golden” quark-lepton mass relation and predictions for 0 nu beta beta decay, the model provides a good global description of all flavor observables.
|