Heinze, M., & Malinsky, M. (2011). Flavor structure of supersymmetric SO(10) GUTs with extended matter sector. Phys. Rev. D, 83(3), 035018–16pp.
Abstract: We discuss in detail the flavor structure of the supersymmetric SOd(10) grand unified models with the three traditional 16-dimensional matter spinors mixed with a set of extra ten-dimensional vector multiplets which can provide the desired sensitivity of the standard model matter spectrum to the grand unified theory symmetry breakdown at the renormalizable level. We put the qualitative argument that a successful fit of the quark and lepton data requires an active participation of more than a single vector matter multiplet on a firm, quantitative ground. We find that the strict no-go obtained for the fits of the charged-sector observables in case of a single active matter 10 is relaxed if a second vector multiplet is added to the matter sector and excellent, though nontrivial, fits can be devised. Exploiting the unique calculable part of the neutrino mass matrix governed by the SUd(2)(L) triplet in the 54-dimensional Higgs multiplet, a pair of genuine predictions of the current setting is identified: a nonzero value of the leptonic 1-3 mixing close to the current 90% C.L. limit and a small leptonic Dirac CP phase are strongly preferred by all solutions with the global-fit chi(2) values below 50.
|
Dutka, T. P., & Gargalionis, J. (2023). Dimension-five baryon-number violation in low-scale Pati-Salam models. Phys. Rev. D, 107(3), 035019–10pp.
Abstract: The gauge bosons of the Pati-Salam model do not mediate proton decay at the renormalizable level, and for this reason it is possible to construct scenarios in which SU(4) (R) SU(2)R is broken at relatively low scales. In this paper we show that such low-scale models generate dimension-five operators that can give rise to nucleon decays at unacceptably large rates, even if the operators are suppressed by the Planck scale. We find an interesting complementarity between the nucleon-decay limits and the usual meson-decay constraints. Furthermore, we argue that these operators are generically present when the model is embedded into SO(10), lowering the suppression scale. Under reasonable assumptions, the lower limit on the breaking scale can be constrained to be as high as O(108) GeV.
|
Ghosh, P., Lopez-Fogliani, D. E., Mitsou, V. A., Muñoz, C., & Ruiz de Austri, R. (2015). Hunting physics beyond the standard model with unusual W-+/- and Z decays. Phys. Rev. D, 91(3), 035020–8pp.
Abstract: Nonstandard on-shell decays of W-+/- and Z bosons are possible within the framework of extended supersymmetric models, i.e., with singlet states and/or new couplings compared to the minimal supersymmetric standard model. These modes are typically encountered in regions of the parameter space with light singlet-like scalars, pseudoscalars, and neutralinos. In this letter we emphasize how these states can lead to novel signals at colliders from Z- or W-+/--boson decays with prompt or displaced multileptons/tau jets/jets/photons in the final states. These new modes would give distinct evidence of new physics even when direct searches remain unsuccessful. We discuss the possibilities of probing these new signals using the existing LHC run-I data set. We also address the same in the context of the LHC run-II, as well as for the future colliders. We exemplify our observations with the “mu from v” supersymmetric standard model, where three generations of right-handed neutrino superfields are used to solve shortcomings of the minimal supersymmetric standard model. We also extend our discussion for other variants of supersymmetric models that can accommodate similar signatures.
|
Barenboim, G., Chun, E. J., Jung, S. H., & Park, W. I. (2014). Implications of an axino LSP for naturalness. Phys. Rev. D, 90(3), 035020–12pp.
Abstract: Both the naturalness of the electroweak symmetry breaking and the resolution of the strong CP problem may require a small Higgsino mass μgenerated by a realization of the DFSZ axion model. Assuming the axino is the lightest supersymmetric particle, we study its implications on μand the axion scale. Copiously produced light Higgsinos at collider (effectively only neutral next-to-lightest superparticles pairs) eventually decay to axinos leaving prompt multileptons or displaced vertices which are being looked for at the LHC. We use latest LHC7 + 8 results to derive current limits on μand the axion scale. Various Higgsino-axino phenomenology is illustrated by comparing with a standard case without lightest axinos as well as with a more general case with additional light gauginos in the spectrum.
|
Lopez-Ibañez, M. L., Melis, A., Jay Perez, M., Rahat, M. H., & Vives, O. (2022). Constraining low-scale flavor models with (g-2)(mu) and lepton flavor violation. Phys. Rev. D, 105(3), 035021–21pp.
Abstract: We present here two concrete examples of models where a sub-TeV scale breaking of their respective T-13 and A(5) flavor symmetries is able to account for the recently observed discrepancy in the muon anomalous magnetic moment, (g – 2)(mu). Similarities in the flavor structures of the charged-lepton Yukawa matrix and dipole matrix yielding (g – 2)(mu) give rise to strong constraints on low-scale flavor models when bounds from lepton flavor violation (LFV) are imposed. These constraints place stringent limits on the off- diagonal Yukawa structure, suggesting a mostly (quasi)diagonal texture for models with a low flavor breaking scale A(f). We argue that many of the popular flavor models in the literature designed to explain the fermion masses and mixings are not suitable for reproducing the observed discrepancy in (g – 2)(mu), which requires a delicate balance of maintaining a low flavor scale while simultaneously satisfying strong LFV constraints.
|
Botella, F. J., Cornet-Gomez, F., & Nebot, M. (2020). Electron and muon g-2 anomalies in general flavor conserving two-Higgs-doublet models. Phys. Rev. D, 102(3), 035023–19pp.
Abstract: In general two-Higgs-doublet models (2HDMs) without scalar flavor changing neutral couplings (SFCNC) in the lepton sector, the electron, muon, and tau interactions can be decoupled in a robust framework, stable under renormalization group evolution. In this framework, the breaking of lepton flavor universality (LFU) goes beyond the mass proportionality, opening the possibility to accommodate in a simple manner a different behavior among charged leptons. We analyze simultaneously the electron and muon (g – 2) anomalies in the context of these general flavor conserving models in the leptonic sector (gtlFC). We consider two different models, I-gtlFC and II-gelFC, in which the quark Yukawa couplings coincide, respectively, with the ones in type I and in type II 2HDMs. We find two types of solutions that fully reproduce both (g – 2) anomalies, and which are compatible with experimental constraints from LEP and LHC, from LFU, from flavor and electroweak physics, and with theoretical constraints in the scalar sector. In the first type of solution, all the new scalars have masses in the 1-2.5 TeV range, the vacuum expectation values (vevs) of both doublets are quite similar in magnitude, and both anomalies are dominated by two loop Barr-Zee contributions. This solution appears in both models. There is a second type of solution, where one loop contributions are dominant in the muon anomaly, all new scalars have masses below 1 TeV, and the ratio of vevs is in the range 10-100. The second neutral scalar H is the lighter among the new scalars, with a mass in the 210-390 GeV range while the pseudoscalar A is the heavier, with a mass in the range 400-900 GeV. The new charged scalar H-+/- is almost degenerate either with the scalar or with the pseudoscalar. This second type of solution only appears in the I-gelFC model. Both solutions require the soft breaking of the Z(2) symmetry of the Higgs potential.
|
Leite, J., Sadhukhan, S., & Valle, W. F. (2024). Dynamical scoto-seesaw mechanism with gauged B – L symmetry. Phys. Rev. D, 109(3), 035023–17pp.
Abstract: We propose a dynamical scoto-seesaw mechanism using a gauged B – L symmetry. Dark matter is reconciled with neutrino mass generation, in such a way that the atmospheric scale arises a la seesaw, while the solar scale is scotogenic, arising radiatively from the exchange of “dark” states. This way we “explain” the solar-to-atmospheric scale ratio. The TeV-scale seesaw mediator and the two dark fermions carry different B – L charges. Dark matter stability follows from the residual matter parity that survives B – L breaking. Besides having collider tests, the model implies sizable charged lepton flavor violating (cLFV) phenomena, including Goldstone boson emission processes.
|
Celis, A., Fuentes-Martin, J., Vicente, A., & Virto, J. (2017). Gauge-invariant implications of the LHCb measurements on lepton-flavor nonuniversality. Phys. Rev. D, 96(3), 035026–8pp.
Abstract: We study the implications of the recent measurements of R-K and R-K* by the LHCb Collaboration. We do that by adopting a model-independent approach based on the Standard Model effective field theory (SMEFT), with the dominant new physics (NP) effects encoded in the coefficients of dimension-6 operators respecting the full Standard Model (SM) gauge symmetry. After providing simplified expressions for R-K and R-K*, we determine the implications of the recent LHCb results for these observables on the coefficients of the SMEFT operators at low and high energies. We also take into account all b -> sll data, which combined lead to effective NP scenarios with SM pulls in excess of 5 sigma. Thus, the operators discussed in this paper would be the first dimension-6 terms in the SM Lagrangian to be detected experimentally. Indirect constraints on these operators are also discussed. The results of this paper transcend the singularity of the present situation and set a standard for future analyses in b -> s transitions when the NP is assumed to lie above the electroweak scale.
|
Han, C., Lopez-Ibañez, M. L., Melis, A., Vives, O., & Yang, J. M. (2021). Anomaly-free leptophilic axionlike particle and its flavor violating tests. Phys. Rev. D, 103(3), 035028–7pp.
Abstract: Motivated by the recent Xenon1T result, we study a leptophilic flavor-dependent anomaly-free axionlike particle (ALP) and its effects on charged-lepton flavor violation. We present two representative models. The first one considers that the ALP origins from the flavon that generates the charged-lepton masses. The second model assumes a larger flavor symmetry such that more general mixings in the charged-lepton are possible, while maintaining flavor-dependent ALP couplings. We find that a keV ALP explaining the Xenon1T result is still viable for lepton flavor violation and stellar cooling astrophysical limits. On the other hand, if the Xenon1T result is confirmed, future charged-lepton flavor violation measurements can be complementary to probe such a possibility.
|
Gonzalez Suarez, R., Pattnaik, B., & Zurita, J. (2025). Leptophilic Z' bosons at the FCC-ee: Discovery opportunities. Phys. Rev. D, 111(3), 035029–15pp.
Abstract: We examine the possibility to detect new SM-neutral vector bosons (Z') that couple exclusively to leptons in the electron-positron mode of the Future Circular Collider (FCC-ee). Focusing on the Z' production with a radiated photon search channel, we show that the FCC-ee can significantly extend the unprobed parameter space by increasing the exclusion in the coupling by one to two orders of magnitude in the kinematically allowed mass range (from 10 to 365 GeV), with the leading sensitivity being driven by the muon channel. In doing so, it outperforms other proposed lepton collider options such as CLIC and ILC in this range of masses. Further, we discuss the possibility of improving the sensitivity of the FCC-ee to this model through the modification of the dilepton invariant mass resolution and the photon energy resolution. The impact of systematic uncertainties on the expected sensitivities is also studied.
|