|   | 
Details
   web
Records
Author Balaudo, A.; Calore, F.; De Romeri, V.; Donato, F.
Title NAJADS: a self-contained framework for the direct determination of astrophysical J-factors Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages (up) 001 - 33pp
Keywords dark matter simulations; dark matter theory; dark matter detectors
Abstract Cosmological simulations play a pivotal role in understanding the properties of the dark matter (DM) distribution in both galactic and galaxy -cluster environments. The characterization of DM structures is crucial for informing indirect DM searches, aiming at the detection of the annihilation (or decay) products of DM particles. A fundamental quantity in these analyses is the astrophysical J -factor. In the DM phenomenology community, J -factors are typically computed through the semi -analytical modelling of the DM mass distribution, which is affected by large uncertainties. With the scope of addressing and possibly reducing these uncertainties, we present NAJADS, a self-contained framework to derive the DM J -factor directly from the raw simulations data. We show how this framework can be used to compute all -sky maps of the J -factor, automatically accounting for the complex 3D structure of the simulated halos and for the boosting of the signal due to the density fluctuations along the line of sight. After validating our code, we present a proof -of -concept application of NAJADS to a realistic halo from the IllustrisTNG suite, and exploit it to make a thorough comparison between our numerical approach and traditional semi -analytical methods. JCAP02(2024)001
Address [Balaudo, Anna] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands, Email: balaudo@strw.leidenuniv.nl;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001182021200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6018
Permanent link to this record
 

 
Author D'Auria, G. et al; Gonzalez-Iglesias, D.; Gimeno, B.; Pereira, D.E.
Title The CompactLight Design Study Type Journal Article
Year 2024 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.
Volume Issue Pages (up) 1-208
Keywords
Abstract CompactLight is a Design Study funded by the European Union under the Horizon 2020 research and innovation funding programme, with Grant Agreement No. 777431. CompactLight was conducted by an International Collaboration of 23 international laboratories and academic institutions, three private companies, and five third parties. The project, which started in January 2018 with a duration of 48 months, aimed to design an innovative, compact, and cost-effective hard X-ray FEL facility complemented by a soft X-ray source to pave the road for future compact accelerator-based facilities. The result is an accelerator that can be operated at up to 1 kHz pulse repetition rate, beyond today's state of the art, using the latest concepts for high brightness electron photoinjectors, very high gradient accelerating structures in X-band, and novel short-period undulators. In this report, we summarize the main deliverable of the project: the CompactLight Conceptual Design Report, which overviews the current status of the design and addresses the main technological challenges.
Address [D'Auria, G.; Danailov, M.; Mitri, S. Di; Ferianis, M.; Gioppo, R.; Rochow, R.; Tabacco, C.; Zangrando, M.] Elettra Sincrotrone Trieste SCpA, AREA Sci Pk, I-34149 Trieste, Italy, Email: gerardo.dauria@elettra.eu
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1951-6355 ISBN Medium
Area Expedition Conference
Notes WOS:001198683900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6122
Permanent link to this record
 

 
Author n_TOF Collaboration (Belloni, F. et al); Domingo-Pardo, C.; Tain, J.L.
Title Neutron-induced fission cross-section of U-233 in the energy range 0.5 < E-n < 20 MeV Type Journal Article
Year 2011 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 47 Issue 1 Pages (up) 2 - 7pp
Keywords
Abstract The neutron-induced fission cross-section of U-233 has been measured at the CERN nTOF facility relative to the standard fission cross-section of U-235 between 0.5 and 20MeV. The experiment was performed with a fast ionization chamber for the detection of the fission fragments and to discriminate against alpha-particles from the natural radioactivity of the samples. The high instantaneous flux and the low background of the nTOF facility result in data with uncertainties of approximate to 3%, which were found in good agreement with previous experiments. The high quality of the present results allows to improve the evaluation of the U-233(n, f) cross-section and, consequently, the design of energy systems based on the Th/U cycle.
Address [Belloni, F.; Milazzo, P. M.; Abbondanno, U.; Fujii, K.; Moreau, C.] Ist Nazl Fis Nucl INFN, Trieste, Italy, Email: paolo.milazzo@ts.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes ISI:000288550800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 539
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J.
Title QCD effective charges from lattice data Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages (up) 002 - 24pp
Keywords Nonperturbative Effects; QCD
Abstract We use recent lattice data on the gluon and ghost propagators, as well as the Kugo-Ojima function, in order to extract the non-perturbative behavior of two particular definitions of the QCD effective charge, one based on the pinch technique construction, and one obtained from the standard ghost-gluon vertex. The construction relies crucially on the definition of two dimensionful quantities, which are invariant under the renormalization group, and are built out of very particular combinations of the aforementioned Green's functions. The main non-perturbative feature of both effective charges, encoded in the infrared finiteness of the gluon propagator and ghost dressing function used in their definition, is the freezing at a common finite (non-vanishing) value, in agreement with a plethora of theoretical and phenomenological expectations. We discuss the sizable discrepancy between the freezing values obtained from the present lattice analysis and the corresponding estimates derived from several phenomenological studies, and attribute its origin to the difference in the gauges employed. A particular toy calculation suggests that the modifications induced to the non-perturbative gluon propagator by the gauge choice may indeed account for the observed deviation of the freezing values.
Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: arlene.aguilar@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000281504500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 384
Permanent link to this record
 

 
Author n_TOF Collaboration (Belloni, F. et al); Domingo-Pardo, C.; Tain, J.L.
Title Measurement of the neutron-induced fission cross-section of Am-241 at the time-of-flight facility n_TOF Type Journal Article
Year 2013 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 49 Issue 1 Pages (up) 2 - 6pp
Keywords
Abstract The neutron-induced fission cross-section of Am-241 has been measured relative to the standard fission cross-section of U-235 between 0.5 and 20 MeV. The experiment was performed at the CERN nTOF facility. Fission fragments were detected by a fast ionization chamber by discriminating against the alpha-particles from the high radioactivity of the samples. The high instantaneous neutron flux and the low background of the nTOF facility enabled us to obtain uncertainties of approximate to 5%. With the present results it was possible to resolve discrepancies between previous data sets and to confirm current evaluations, thus providing important information for design studies of future reactors with improved fuel burn-up.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000315048100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1399
Permanent link to this record