|   | 
Details
   web
Records
Author Aja, B. et al; Gimeno, B.
Title The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors Type Journal Article
Year 2022 Publication Journal of Cosmology And Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages (up) 044 - 29pp
Keywords dark matter experiments; axions; dark matter detectors
Abstract We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330-460 μeV, within the W-band (80-110 GHz), an unexplored parameter space in the well-motivated dark matter window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics (horns and mirrors). The experiment is in preparation and will be installed in the dilution refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detection with CADEx, together with the potential of the experiment to search for dark photons, are presented.
Address [Aja, Beatriz; Artal, Eduardo; de la Fuente, Luisa; Pablo Pascual, Juan] Univ Cantabria, Dept Ingn Comunicac, Plaza Ciencia, Santander 39005, Spain, Email: ajab@unican.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000934034600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5478
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Study of charmonium and charmonium-like contributions in B+ -> J/psi eta K+ decays Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages (up) 046 - 29pp
Keywords B Physics; Branching fraction; Hadron-Hadron Scattering; Quarkonium
Abstract A study of B+ -> J/psi eta K+ decays, followed by J/psi -> mu(+)mu(-) and eta -> gamma gamma, is performed using a dataset collected with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb(-1). The J/psi eta mass spectrum is investigated for contributions from charmonia and charmonium-like states. Evidence is found for the B+ -> (psi(2)(3823) -> J/psi eta)K+ and B+ -> (psi(4040) -> J/psi eta)K+ decays with significance of 3.4 and 4.7 standard deviations, respectively. This constitutes the first evidence for the psi(2)(3823) -> J/psi eta decay.
Address [de Souza Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; Carneiro Da Graca, U. De Freitas; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: Ivan.Belyaev@itep.ru
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000781968600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5196
Permanent link to this record
 

 
Author Drach, V.; Fritzsch, P.; Rago, A.; Romero-Lopez, F.
Title Singlet channel scattering in a composite Higgs model on the lattice Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 1 Pages (up) 47 - 10pp
Keywords
Abstract We present the first calculation of the scattering amplitude in the singlet channel beyond QCD. The calculation is performed in SU(2) gauge theory with N-f = 2 fundamental Dirac fermions and based on a finite-volume scattering formalism. The theory exhibits a SU (4) -> Sp(4) chiral symmetry breaking pattern that is used to design minimal composite Higgs models currently tested at the LHC. Our results show that, for the range of underlying fermion mass considered, the lowest flavour singlet state is stable.
Address [Drach, Vincent; Fritzsch, Patrick; Rago, Antonio] Univ Plymouth, Ctr Math Sci, Plymouth PL4 8AA, Devon, England, Email: fernando.romero@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000744537400008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5097
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Search for non-standard neutrino interactions with 10 years of ANTARES data Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages (up) 048 - 22pp
Keywords Neutrino Detectors and Telescopes (experiments)
Abstract Non-standard interactions of neutrinos arising in many theories beyond the Standard Model can significantly alter matter effects in atmospheric neutrino propagation through the Earth. In this paper, a search for deviations from the prediction of the standard 3-flavour atmospheric neutrino oscillations using the data taken by the ANTARES neutrino telescope is presented. Ten years of atmospheric neutrino data collected from 2007 to 2016, with reconstructed energies in the range from similar to 16 GeV to 100 GeV, have been analysed. A log-likelihood ratio test of the dimensionless coefficients epsilon(mu tau) and epsilon(tau tau) – epsilon(mu mu) does not provide clear evidence of deviations from standard interactions. For normal neutrino mass ordering, the combined fit of both coefficients yields a value 1.7 sigma away from the null result. However, the 68% and 95% confidence level intervals for epsilon(mu tau) and epsilon(tau tau) – epsilon(mu mu), respectively, contain the null value. Best fit values, one standard deviation errors and bounds at the 90% confidence level for these coefficients are given for both normal and inverted mass orderings. The constraint on epsilon(mu tau) is among the most stringent to date and it further restrains the strength of possible non-standard interactions in the μ- tau sector.
Address [Albert, A.; Drouhin, D.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: juanjo@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000822485300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5285
Permanent link to this record
 

 
Author Baeza-Ballesteros, J.; Hernandez, P.; Romero-Lopez, F.
Title A lattice study of pi pi scattering at large N-c Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages (up) 049 - 39pp
Keywords Hadronic Spectroscopy; Structure and Interactions; Lattice QCD; 1/N Expansion; Chiral Lagrangian
Abstract We present the first lattice study of pion-pion scattering with varying number of colors, N-c. We use lattice simulations with four degenerate quark flavors, N-f = 4, and N-c= 3 – 6. We focus on two scattering channels that do not involve vacuum diagrams. These correspond to two irreducible representations of the SU(4) flavor group: the fully symmetric one, SS, and the fully antisymmetric one, AA. The former is a repulsive channel equivalent to the isospin-2 channel of SU(2). By contrast, the latter is attractive and only exists for N-f >= 4. A representative state is (vertical bar D-s(+) pi(+)> – vertical bar D+ K+ >) /root 2. Using Lfischer's formalism, we extract the near-threshold scattering amplitude and we match our results to Chiral Perturbation Theory (ChPT) at large N-c. For this, we compute the analytical U(N-f) ChPT prediction for two-pion scattering, and use the lattice results to constrain the N-c scaling of the relevant low-energy couplings.
Address [Baeza-Ballesteros, Jorge; Hernandez, Pilar; Romero-Lopez, Fernando] Univ Valencia, CSIC, IFIC, Paterna 46980, Spain, Email: jorge.baeza@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000809342900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5258
Permanent link to this record
 

 
Author Abdalla, E. et al; Mena, O.
Title Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies Type Journal Article
Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume 34 Issue Pages (up) 49-211
Keywords
Abstract The standard Lambda Cold Dark Matter (Lambda CDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H-0, the sigma(8)-S-8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0 sigma tension between the Planck CMB estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Omega(m), and the amplitude or rate of the growth of structure (sigma(8), f sigma(8)). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H-0-S-8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions.
Address [Abdalla, Elcio] Univ Sao Paulo, Inst Fis, CP 66318, BR-0531597 Sao Paulo, Brazil, Email: e.divalentino@sheffield.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:000807122400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5465
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.; Soughton, M.
Title A simple guide from machine learning outputs to statistical criteria in particle physics Type Journal Article
Year 2022 Publication Scipost Physics Core Abbreviated Journal SciPost Phys. Core
Volume 5 Issue 4 Pages (up) 050 - 31pp
Keywords
Abstract In this paper we propose ways to incorporate Machine Learning training outputs into a study of statistical significance. We describe these methods in supervised classification tasks using a CNN and a DNN output, and unsupervised learning based on a VAE. As use cases, we consider two physical situations where Machine Learning are often used: high-pT hadronic activity, and boosted Higgs in association with a massive vector boson.
Address [Khosa, Charanjit Kaur] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England, Email: Charanjit.Kaur@bristol.ac.uk;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000929724800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5475
Permanent link to this record
 

 
Author Abbar, S.; Capozzi, F.
Title Suppression of fast neutrino flavor conversions occurring at large distances in core-collapse supernovae Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages (up) 051 - 13pp
Keywords supernova neutrinos; core-collapse supernovae; neutrino astronomy; supernovas
Abstract Neutrinos propagating in dense neutrino media such as core-collapse supernovae and neutron star merger remnants can experience the so-called fast flavor conversions on scales much shorter than those expected in vacuum. A very generic class of fast flavor instabilities is the ones which are produced by the backward scattering of neutrinos off the nuclei at relatively large distances from the supernova core. In this study we demonstrate that despite their ubiquity, such fast instabilities are unlikely to cause significant flavor conversions if the population of neutrinos in the backward direction is not large enough. Indeed, the scattering-induced instabilities can mostly impact the neutrinos traveling in the backward direction, which represent only a small fraction of neutrinos at large radii. We show that this can be explained by the shape of the unstable flavor eigenstates, which can be extremely peaked at the backward angles.
Address [Abbar, Sajad] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: abbar@mpp.mpg.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000776551600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5186
Permanent link to this record
 

 
Author Afonso, V.I.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title An infinite class of exact rotating black hole metrics of modified gravity Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages (up) 052 - 14pp
Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity
Abstract We build an infinite class of exact axisymmetric solutions of a metric-affine gravity theory, namely, Eddington-inspired Born-Infeld gravity, coupled to an anisotropic fluid as a matter source. The solution-generating method employed is not unique of this theory but can be extended to other Ricci-Based Gravity theories (RBGs), a class of theories built out of contractions of the Ricci tensor with the metric. This method exploits a correspondence between the space of solutions of General Relativity and that of RBGs, and is independent of the symmetries of the problem. For the particular case in which the fluid is identified with non-linear electromagnetic fields we explicitly derive the corresponding axisymmetric solutions. Finally, we use this result to work out the counterpart of the Kerr-Newman black hole when Maxwell electrodynamics is set on the metric-affine side. Our results open up an exciting new avenue for testing new gravitational phenomenology in the fields of gravitational waves and shadows out of rotating black holes.
Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Academ Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000776994500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5185
Permanent link to this record
 

 
Author ATLAS Collaboration
Title A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Type Journal Article
Year 2022 Publication Nature Abbreviated Journal Nature
Volume 607 Issue 7917 Pages (up) 52-59
Keywords
Abstract The standard model of particle physics(1-4) describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles(5-9). The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons-the carriers of the strong, electromagnetic and weak forces-are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (tau)) are well measured and indications of interactions with a second-generation particle (muons, mu) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000820564200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5521
Permanent link to this record