|   | 
Details
   web
Records
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment DUNE Collaboration Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 4 Pages (up) 322 - 51pp
Keywords
Abstract The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: lkoerner@central.uh.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000641453500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4809
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P.
Title Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations Type Journal Article
Year 2020 Publication Nature Abbreviated Journal Nature
Volume 580 Issue 7803 Pages (up) 339-344
Keywords
Abstract The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 1964(1), and CP violation in the weak interactions of quarks was soon established(2). Sakharov proposed(3) that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis(4). Leptonic mixing, which appears in the standard model's charged current interactions(5,6), provides a potential source of CP violation through a complex phase dCP, which is required by some theoretical models of leptogenesis(7-9). This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments(10,11). Until now, the value of dCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of dCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3 sigma). The 3 sigma confidence interval for delta(CP), which is cyclic and repeats every 2p, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks.
Address [Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000530151300023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4388
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Supernova neutrino burst detection with the Deep Underground Neutrino Experiment Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 5 Pages (up) 423 - 26pp
Keywords
Abstract The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered.
Address [Andreopoulos, C.; Decowski, M. P.; De Jong, P.; Filthaut, F.; Miedema, T.; Weber, A.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: kate.scholberg@duke.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000661101700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4859
Permanent link to this record
 

 
Author NEXT Collaboration (Haefner, J. et al); Carcel, S.; Carrion, J.V.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Soto-Oton, J.; Uson, A.
Title Demonstration of event position reconstruction based on diffusion in the NEXT-white detector Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 5 Pages (up) 518 - 13pp
Keywords
Abstract Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from Kr-83m calibration electron captures (E similar to 45 keV), the position of origin of low-energy events is determined to 2 cm precision with bias <1 mm. A convolutional neural network approach is then used to quantify diffusion for longer tracks (E >= 1.5 MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q(beta beta) in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation.
Address [Haefner, J.; Contreras, T.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: karen.navarro@uta.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001228898800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6138
Permanent link to this record
 

 
Author Double Chooz collaboration (de Kerret, H. et al); Novella, P.
Title Double Chooz theta(13) measurement via total neutron capture detection Type Journal Article
Year 2020 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 16 Issue Pages (up) 558-564
Keywords
Abstract Neutrinos were assumed to be massless particles until the discovery of the neutrino oscillation process. This phenomenon indicates that the neutrinos have non-zero masses and the mass eigenstates (nu(1), nu(2), nu(3)) are mixtures of their flavour eigenstates (nu(e), nu(mu), nu(tau)). The oscillations between different flavour eigenstates are described by three mixing angles (theta(12), theta(23), theta(13)), two differences of the squared neutrino masses of the nu(2)/nu(1) and nu(3)/nu(1) pairs and a charge conjugation parity symmetry violating phase delta(CP). The Double Chooz experiment, located near the Chooz Electricite de France reactors, measures the oscillation parameter theta(13) using reactor neutrinos. Here, the Double Chooz collaboration reports the measurement of the mixing angle theta(13) with the new total neutron capture detection technique from the full data set, yielding sin(2)(2 theta(13)) = 0.105 +/- 0.014. This measurement exploits the multidetector configuration, the isoflux baseline and data recorded when the reactors were switched off. In addition to the neutrino mixing angle measurement, Double Chooz provides a precise measurement of the reactor neutrino flux, given by the mean cross-section per fission <sigma(f)& rang; = (5.71 +/- 0.06) x 10(-43) cm(2) per fission, and reports an empirical model of the distortion in the reactor neutrino spectrum. The Double Chooz collaboration reports the neutrino oscillation parameter theta(13) from a measurement of the disappearance of reactor anti-electron neutrinos with the total neutron capture technique.
Address [de Kerret, H.; Cabrera, A.; Dawson, J., V; Givaudan, A.; Gomez, H.; Hourlier, A.; Karakac, M.; Kryn, D.; Lasserres, T.; Obolensky, M.; Onillon, A.; Suekane, F.; Wagner, S.] Sorbonne Paris Cite Univ, Observ Paris, CEA IRFU, APC,CNRS IN2P3, Paris, France, Email: christian.buck@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473 ISBN Medium
Area Expedition Conference
Notes WOS:000528019800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4389
Permanent link to this record