toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Amerio, A.; Cuoco, A.; Fornengo, N. url  doi
openurl 
  Title Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages (up) 029 - 39pp  
  Keywords gamma ray theory; Machine learning  
  Abstract We reconstruct the extra-galactic gamma-ray source-count distribution, or dN/dS, of resolved and unresolved sources by adopting machine learning techniques. Specifically, we train a convolutional neural network on synthetic 2-dimensional sky-maps, which are built by varying parameters of underlying source-counts models and incorporate the FermiLAT instrumental response functions. The trained neural network is then applied to the Fermi-LAT data, from which we estimate the source count distribution down to flux levels a factor of 50 below the Fermi-LAT threshold. We perform our analysis using 14 years of data collected in the (1, 10) GeV energy range. The results we obtain show a source count distribution which, in the resolved regime, is in excellent agreement with the one derived from cataloged sources, and then extends as dN/dS " S-2 in the unresolved regime, down to fluxes of 5 center dot 10-12 cm-2 s-1. The neural network architecture and the devised methodology have the flexibility to enable future analyses to study the energy dependence of the source-count distribution.  
  Address [Amerio, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: aurelio.amerio@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001097055700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5785  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Study of b(b)over-bar correlations in high energy proton-proton collisions Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages (up) 030 - 28pp  
  Keywords Forward physics; Hadron-Hadron scattering (experiments); Heavy quark production; Particle and resonance production; QCD  
  Abstract Kinematic correlations for pairs of beauty hadrons, produced in high energy proton-proton collisions, are studied. The data sample used was collected with the LHCb experiment at centre-of-mass energies of 7 and 8 TeV and corresponds to an integrated luminosity of 3 fb(-1). The measurement is performed using inclusive b -> J/psi X decays in the rapidity range 2 < y(J/psi) < 4.5. The observed correlations are in good agreement with theoretical predictions.  
  Address [Alfonso Albero, A.; Bediaga, I.; Torres, M. Cruz; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Rodrigues, A. B.; Salustino Guimaraes, V.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000415206700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3376  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The search for neutrinos from TXS 0506+056 with the ANTARES telescope Type Journal Article
  Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 863 Issue 2 Pages (up) L30 - 6pp  
  Keywords astroparticle physics; elementary particles; galaxies: active  
  Abstract The results of three different searches for neutrino candidates, associated with the IceCube-170922A event or from the direction of TXS 0506+056, by the ANTARES neutrino telescope, are presented. The first search refers to the online follow-up of the IceCube alert; the second is based on the standard time-integrated method employed by the Collaboration to search for point-like neutrino sources; the third uses information from the IceCube time-dependent analysis that reported bursting activity centered on 2014 December 13, as input for an ANTARES time-dependent analysis. The online follow-up and the time-dependent analysis yield no events related to the source. The time-integrated study performed over a period from 2007 to 2017 fits 1.03 signal events, which corresponds to a p-value of 3.4% (not considering trial factors). Only for two other astrophysical objects in our candidate list has a smaller p-value been found. When considering that 107 sources have been investigated, the post-trial p-value for TXS 0506+056 corresponds to 87%.  
  Address [Albert, A.; Drouhin, D.; Ruiz, T. Gregoire; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: antares.spokesperson@in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000442002100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3697  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Salt, J.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Search for pair production of Higgs bosons in the b(b)over-barb(b)over-bar final state using proton-proton collisions at root s=13 TeV with the ATLAS detector Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages (up) 030 - 49pp  
  Keywords Hadron-Hadron scattering (experiments)  
  Abstract A search for Higgs boson pair production in the bbbb final state is carried out with up to 36.1 fb(-1) of LHC proton-proton collision data collected at s=13 TeV with the ATLAS detector in 2015 and 2016. Three benchmark signals are studied: a spin-2 graviton decaying into a Higgs boson pair, a scalar resonance decaying into a Higgs boson pair, and Standard Model non-resonant Higgs boson pair production. Two analyses are carried out, each implementing a particular technique for the event reconstruction that targets Higgs bosons reconstructed as pairs of jets or single boosted jets. The resonance mass range covered is 260-3000 GeV. The analyses are statistically combined and upper limits on the production cross section of Higgs boson pairs times branching ratio to bbbb are set in each model. No significant excess is observed; the largest deviation of data over prediction is found at a mass of 280 GeV, corresponding to 2.3 standard deviations globally. The observed 95% confidence level upper limit on the non-resonant production is 13 times the Standard Model prediction.  
  Address [Aloisio, A.; Alonso, A.; Betti, A.; Bingul, A.; Bruni, A.; Manjarres Ramos, J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000455324200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3946  
Permanent link to this record
 

 
Author Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Menendez, J. url  doi
openurl 
  Title Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: current results and future prospects Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages (up) 030 - 22pp  
  Keywords Neutrino Physics; Effective Field Theories  
  Abstract Coherent Elastic neutrino-Nucleus Scattering (CE nu NS), a process recently measured for the first time at ORNL's Spallation Neutron Source, is directly sensitive to the weak form factor of the nucleus. The European Spallation Source (ESS), presently under construction, will generate the most intense pulsed neutrino flux suitable for the detection of CE nu NS. In this paper we quantify its potential to determine the root mean square radius of the point-neutron distribution, for a variety of target nuclei and a suite of detectors. To put our results in context we also derive, for the first time, a constraint on this parameter from the analysis of the energy and timing data of the CsI detector at the COHERENT experiment.  
  Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, E-46980 Valencia, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000561296500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4502  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title Evidence of 200 TeV Photons from HAWC J1825-134 Type Journal Article
  Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 907 Issue 2 Pages (up) L30 - 9pp  
  Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Gamma-ray observatories  
  Abstract The Earth is bombarded by ultrarelativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10(15) eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV gamma-rays from decaying pi(0), produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cerenkov (HAWC) observatory of the gamma-ray source, HAWC J1825-134, whose energy spectrum extends well beyond 200 TeV without a break or cutoff. The source is found to be coincident with a giant molecular cloud. The ambient gas density is as high as 700 protons cm(-3). While the nature of this extreme accelerator remains unclear, CRs accelerated to energies of several PeV colliding with the ambient gas likely produce the observed radiation.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: sabrina.casanova@ifj.edu.pl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612623100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4703  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.; Angles-Alcazar, D.; Genel, S.; Marinacci, F.; Spergel, D.N.; Hernquist, L.; Vogelsberger, M.; Dave, R.; Narayanan, D. url  doi
openurl 
  Title Inferring Halo Masses with Graph Neural Networks Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 935 Issue 1 Pages (up) 30 - 15pp  
  Keywords  
  Abstract Understanding the halo-galaxy connection is fundamental in order to improve our knowledge on the nature and properties of dark matter. In this work, we build a model that infers the mass of a halo given the positions, velocities, stellar masses, and radii of the galaxies it hosts. In order to capture information from correlations among galaxy properties and their phase space, we use Graph Neural Networks (GNNs), which are designed to work with irregular and sparse data. We train our models on galaxies from more than 2000 state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations project. Our model, which accounts for cosmological and astrophysical uncertainties, is able to constrain the masses of the halos with a similar to 0.2 dex accuracy. Furthermore, a GNN trained on a suite of simulations is able to preserve part of its accuracy when tested on simulations run with a different code that utilizes a distinct subgrid physics model, showing the robustness of our method. The PyTorch Geometric implementation of the GNN is publicly available on GitHub (https://github.com/PabloVD/HaloGraphNet).  
  Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, E-46980 Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000838320900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5325  
Permanent link to this record
 

 
Author Alonso, I. et al; Bernabeu, J. url  doi
openurl 
  Title Cold atoms in space: community workshop summary and proposed road-map Type Journal Article
  Year 2022 Publication EPJ Quantum Technology Abbreviated Journal EPJ Quantum Technol.  
  Volume 9 Issue 1 Pages (up) 30 - 55pp  
  Keywords  
  Abstract We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.  
  Address [Alonso, Ivan] Univ Balearic Isl, Higher Polytech Sch, Valldemossa Rd, Palma De Mallorca 07122, Spain, Email: Oliver.Buchmueller@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2662-4400 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000885839700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5424  
Permanent link to this record
 

 
Author Blennow, M.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J.; Marcano, X.; Naredo-Tuero, D. url  doi
openurl 
  Title Bounds on lepton non-unitarity and heavy neutrino mixing Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages (up) 030 - 41pp  
  Keywords Electroweak Precision Physics; Neutrino Mixing; Sterile or Heavy Neutrinos  
  Abstract We present an updated and improved global fit analysis of current flavour and electroweak precision observables to derive bounds on unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos with the active flavours. This new analysis is motivated by new and updated experimental results on key observables such as V-ud, the invisible decay width of the Z boson and the W boson mass. It also improves upon previous studies by considering the full correlations among the different observables and explicitly calibrating the test statistic, which may present significant deviations from a & chi;(2) distribution. The results are provided for three different Type-I seesaw scenarios: the minimal scenario with only two additional right-handed neutrinos, the next to minimal one with three extra neutrinos, and the most general one with an arbitrary number of heavy neutrinos that we parametrise via a generic deviation from a unitary leptonic mixing matrix. Additionally, we also analyze the case of generic deviations from unitarity of the leptonic mixing matrix, not necessarily induced by the presence of additional neutrinos. This last case relaxes some correlations among the parameters and is able to provide a better fit to the data. Nevertheless, inducing only leptonic unitarity deviations avoiding both the correlations implied by the right-handed neutrino extension as well as more strongly constrained operators is challenging and would imply significantly more complex UV completions.  
  Address [Blennow, Mattias] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden, Email: emb@kth.se;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001044930400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5607  
Permanent link to this record
 

 
Author Chakraborty, S.; Gupta, A.; Vanvlasselaer, M. url  doi
openurl 
  Title Anomaly induced cooling of neutron stars: a Standard Model contribution Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages (up) 030 - 23pp  
  Keywords neutron stars; neutrino theory  
  Abstract Young neutron stars cool via the emission of neutrinos from their core. A precise understanding of all the different processes producing neutrinos in the hot and degenerate matter is essential for assessing the cooling rate of such stars. The main Standard Model processes contributing to this effect are nu bremsstrahlung, mURCA among others. In this paper, we investigate another Standard Model process initiated by the Wess-Zumino-Witten term, leading to the emission of neutrino pairs via N gamma -> N nu nu over bar . We find that for proto-neutron stars, such processes with degenerate neutrons can be comparable and even dominate over the typical and well-known cooling mechanisms.  
  Address [Chakraborty, Sabyasachi] Indian Inst Technol, Dept Phys, Kanpur 208016, India, Email: sabyac@iitk.ac.in;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001116545800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5872  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva