|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Search for heavy neutral leptons in W plus . μplus μ+/- jet decays Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 3 Pages (up) 248 - 15pp
Keywords
Abstract A search is performed for heavy neutrinos in the decay of a W boson into two muons and a jet. The data set corresponds to an integrated luminosity of approximately 3.0 fb-1 of proton-proton collision data at centre-of-mass energies of 7 and 8 TeV collected with the LHCb experiment. Both same-sign and opposite-signmuons in the final state are considered. Data are found to be consistent with the expected background. Upper limits on the coupling of a heavy neutrino with the Standard Model neutrino are set at 95% confidence level in the heavy-neutrino mass range from 5 to 50GeV/c2. These are of the order of 10(-3) for lepton-number-conserving decays and of the order of 10(-4) for lepton-number-violating heavy-neutrino decays.
Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: maria.vieites.diaz@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000631882200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4755
Permanent link to this record
 

 
Author Centelles Chulia, S.; Srivastava, R.; Vicente, A.
Title The inverse seesaw family: Dirac and Majorana Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages (up) 248 - 29pp
Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries
Abstract After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking “mu -parameters”. These models can be tested both in colliders and with the observation of lepton flavour violating processes.
Address [Centelles Chulia, Salvador; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000635241800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4772
Permanent link to this record
 

 
Author Barreiros, D.M.; Joaquim, F.R.; Srivastava, R.; Valle, J.W.F.
Title Minimal scoto-seesaw mechanism with spontaneous CP violation Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages (up) 249 - 21pp
Keywords Neutrino Physics; CP violation
Abstract We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal Z8 discrete symmetry, broken to a residual Z2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed Z8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.
Address [Barreiros, D. M.; Joaquim, F. R.] Univ Lisbon, Dept Fis, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: debora.barreiros@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000646917200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4814
Permanent link to this record
 

 
Author Torres Bobadilla, W.J. et al; Driencourt-Mangin, F.; Rodrigo, G.
Title May the four be with you: novel IR-subtraction methods to tackle NNLO calculations Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 3 Pages (up) 250 - 61pp
Keywords
Abstract In this manuscript, we report the outcome of the topical workshop: paving the way to alternative NNLO strategies (https://indico.ific.uv.es/e/WorkStop-ThinkStart_3.0), by presenting a discussion about different frameworks to perform precise higher-order computations for high-energy physics. These approaches implement novel strategies to deal with infrared and ultraviolet singularities in quantum field theories. A special emphasis is devoted to the local cancellation of these singularities, which can enhance the efficiency of computations and lead to discover novel mathematical properties in quantum field theories.
Address [Torres Bobadilla, W. J.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: torres@mpp.mpg.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000631882200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4788
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title Search for long-lived particles decaying to e(+/-)mu(-/+)nu Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 3 Pages (up) 261 - 16pp
Keywords
Abstract Long-lived particles decaying to e(+/-) mu(-/+)nu, with masses between 7 and 50 GeV/c(2) and lifetimes between 2 and 50 ps, are searched for by looking at displaced vertices containing electrons and muons of opposite charges. The search is performed using 5.4 fb(-1) of pp collisions collected with the LHCb detector at a centre-of-mass energy of root s = 13 TeV. Three mechanisms of production of long-lived particles are considered: the direct pair production from quark interactions, the pair production from the decay of a Standard-Model-like Higgs boson with a mass of 125 GeV/c(2), and the charged current production from an on-shell W boson with an additional lepton. No evidence of these long-lived states is obtained and upper limits on the production cross-section times branching fraction are set on the different production modes.
Address [Amato, S.; De Paula, L.; Rodrigues, F. Ferreira; Gandelman, M.; Hicheur, A.; Lopes, J. H.; Garcia, L. Meyer; Nasteva, I; Goicochea, J. M. Otalora; Polycarpo, E.; Rangel, M. S.; De Almeida, F. L. Souza; De Paula, B. Souza] Univ Fed Rio de Janeiro UFRJ, Rio De Janeiro, Brazil, Email: matthieu.marinangeli@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000634800600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4771
Permanent link to this record