AGATA Collaboration(Sahin, E. et al), Gadea, A., & Huyuk, T. (2015). Shell evolution beyond N=40: Cu-69,Cu-71,Cu-73. Phys. Rev. C, 91(3), 034302–9pp.
Abstract: The level structure of the neutron-rich Cu-69, Cu-71, and Cu-73 isotopes has been investigated by means of multinucleon transfer reactions. The experiment was performed at Laboratori Nazionali di Legnaro using the AGATA Demonstrator array coupled to the PRISMA magnetic spectrometer. Lifetimes of excited states in Cu nuclei were measured with the recoil-distance Doppler-shift method. The resulting electromagnetic matrix elements for transitions from excited states in Cu-69,Cu-71,Cu-73 nuclei are used to assess the collective or single-particle character of these states. The results are compared with predictions of large-scale shell-model calculations, giving further insight into the evolution of the proton pf shell as neutrons fill the 1g(9/2) orbital.
|
Estevez, E. et al, Algora, A., Rubio, B., Bernabeu, J., Nacher, E., Tain, J. L., et al. (2011). beta-decay study of (150)Er, (152)Yb, and (156)Yb: Candidates for a monoenergetic neutrino beam facility. Phys. Rev. C, 84(3), 034304–6pp.
Abstract: The beta decays of (150)Er, (152)Yb, and (156)Yb nuclei are investigated using the total absorption spectroscopy technique. These nuclei can be considered possible candidates for forming the beam of a monoenergetic neutrino beam facility based on the electron capture (EC) decay of radioactive nuclei. Our measurements confirm that for the cases studied the EC decay proceeds mainly to a single state in the daughter nucleus.
|
AGATA Collaboration(Liu, X. et al), Gadea, A., Jurado, M., Domingo-Pardo, C., Huyuk, T., & Perez-Vidal, R. M. (2022). Evidence for spherical-oblate shape coexistence in Tc-87. Phys. Rev. C, 106(3), 034304–6pp.
Abstract: Excited states in the neutron-deficient nucleus Tc-87 have been studied via the fusion-evaporation reaction 54Fe(36Ar, 2n1p) Tc-87 at 115 MeV beam energy. The AGATA gamma-ray spectrometer coupled to the DIAMANT, NEDA, and Neutron Wall detector arrays for light-particle detection was used to measure the prompt coincidence of gamma rays and light particles. Six transitions from the deexcitation of excited states belonging to a new band in Tc-87 were identified by comparing gamma-ray intensities in the spectra gated under different reaction channel selection conditions. The constructed level structure was compared with the shell model and total Routhian surface calculations. The results indicate that the new band structure in 87Tc is built on a spherical configuration, which is different from that assigned to the previously identified oblate yrast rotational band.
|
Dudouet, J. et al, Gadea, A., & Perez-Vidal, R. M. (2024). High-resolution spectroscopy of neutron-rich Br isotopes and signatures for a prolate-to-oblate shape transition at N=56. Phys. Rev. C, 110(3), 034304–16pp.
Abstract: The first systematic experimental study of the neutron-rich Br isotopes with two complementary state-ofthe-art techniques is presented. These isotopes were populated in the fission process at two different facilities, GANIL and ILL. New spectroscopic information was obtained for odd-even Br87-93 isotopes and the experimental results were compared with state-of-the-art large scale shell model (LSSM) and discrete nonorthogonal (DNO) shell model calculations. As a result of such theoretical approaches, a transition from prolate (Br-87,Br-89) to oblate (Br-91,Br-93) shapes is obtained from the subtle balance between proton and neutron quadrupole deformations, as a clear signature of a pseudo-SU3 quadrupole regime.
|
Soderstrom, P. A. et al, Algora, A., & Gadea, A. (2010). Spectroscopy of neutron-rich Dy-168,Dy-170: Yrast band evolution close to the NpNn valence maximum. Phys. Rev. C, 81(3), 034310–5pp.
Abstract: The yrast sequence of the neutron-rich dysprosium isotope Dy-168 has been studied using multinucleon transfer reactions following collisions between a 460-MeV Se-82 beam and an Er-170 target. The reaction products were identified using the PRISMA magnetic spectrometer and the gamma rays detected using the CLARA HPGe-detector array. The 2(+) and 4(+) members of the previously measured ground-state rotational band of Dy-168 have been confirmed and the yrast band extended up to 10(+). A tentative candidate for the 4(+) -> 2(+) transition in Dy-170 was also identified. The data on these nuclei and on the lighter even-even dysprosium isotopes are interpreted in terms of total Routhian surface calculations and the evolution of collectivity in the vicinity of the proton-neutron valence product maximum is discussed.
|