|   | 
Details
   web
Records
Author Blankenburg, G.; Morisi, S.
Title Fermion masses and mixing with tri-bimaximal in SO(10) with type-I seesaw Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages (up) 016 - 18pp
Keywords Neutrino Physics; GUT
Abstract We study a class of models for tri-bimaximal neutrino mixing in SO(10) grand unified SUSY framework. Neutrino masses arise from both type-I and type-II seesaw mechanisms. We use dimension five operators in order to not spoil tri-bimaximal mixing by means of type-I contribution in the neutrino sector. We show that it is possible to fit all fermion masses and mixings including also the recent T2K result as deviation from the tri-bimaximal.
Address [Blankenburg, G.] Univ Roma Tre, Dipartimento Fis E Amaldi, I-00146 Rome, Italy, Email: blankenburg@fis.uniroma3.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000300181800016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 970
Permanent link to this record
 

 
Author Carrasco, N.; Ciuchini, M.; Dimopoulos, P.; Frezzotti, R.; Gimenez, V.; Herdoiza, G.; Lubicz, V.; Michael, C.; Picca, E.; Rossi, G.C.; Sanfilippo, F.; Shindler, A.; Silvestrini, L.; Simula, S.; Tarantino, C.
Title B-physics from N-f=2 tmQCD: the Standard Model and beyond Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages (up) 016 - 52pp
Keywords Lattice QCD; B-Physics; Beyond Standard Model; Quark Masses and SM Parameters
Abstract We present a lattice QCD computation of the b-quark mass, the B and B-s decay constants, the B-mixing bag parameters for the full four-fermion operator basis as well as determinations for xi and f(Bq) root B-i((q)) extrapolated to the continuum limit and to the physical pion mass. We used N-f = 2 twisted mass Wilson fermions at four values of the lattice spacing with pion masses ranging from 280 to 500 MeV. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out on ratios of physical quantities computed at nearby quark masses, exploiting the fact that they have an exactly known infinite mass limit. Our results are m(b)(m(b), (MS) over bar) = 4.29(12) GeV, f(Bs) = 228(8) MeV, f(B) = 189(8) MeV and f(Bs)/f(B) = 1.206(24). Moreover with our results for the bag-parameters we find xi = 1.225(31), B-1((s))/B-1((d)) = 1.01(2), f (Bd) root(B) over cap ((d))(1) = 216(10) MeV and integral Bs root(B) over cap ((s))(1) = 262(10) MeV. We also computed the bag parameters for the complete basis of the four-fermion operators which are required in beyond the SM theories. By using these results for the bag parameters we are able to provide a refined Unitarity Triangle analysis in the presence of New Physics, improving the bounds coming from B-(s) -(B) over bar ((s)) mixing.
Address [Carrasco, N.; Gimenez, V.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: nuria.carrasco@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000347824200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2086
Permanent link to this record
 

 
Author Johannesson, G.; Ruiz de Austri, R.; Vincent, A.C.; Moskalenko, I.V.; Orlando, E.; Porter, T.A.; Strong, A.W.; Trotta, R.; Feroz, F.; Graff, P.; Hobson, M.P.
Title Bayesian analysis of cosmic-ray propagation: evidence against homogeneous diffusion Type Journal Article
Year 2016 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 824 Issue 1 Pages (up) 16 - 19pp
Keywords astroparticle physics; cosmic rays; diffusion; Galaxy: general; ISM: general; methods: statistical
Abstract We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, (p) over bar and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p, (p) over bar, and He data are significantly different from those that fit light elements, including the B/C and Be-10/Be-9 secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.
Address [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000377937300016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2727
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Bou-Cabo, M.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages (up) 016 - 13pp
Keywords dark matter experiments; neutrino detectors; dark matter detectors; neutrino astronomy
Abstract A search for Secluded Dark Matter annihilation in the Sun using 2007-2012 data of the ANTARES neutrino telescope is presented. Three different cases are considered: a) detection of dimuons that result from the decay of the mediator, or neutrino detection from: b) mediator that decays into a dimuon and, in turn, into neutrinos, and c) mediator that decays directly into neutrinos. As no significant excess over background is observed, constraints are derived on the dark matter mass and the lifetime of the mediator.
Address [Adrian-Martineza, S.; Ardid, M.; Bou-Cabo, M.; Felis, I.; Martinez-Mora, J. A.; Saldana, M.; Wilms, J.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain, Email: siladmar@upv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000389860500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2902
Permanent link to this record
 

 
Author Jeong, K.S.; Park, W.I.
Title Cosmology with a supersymmetric local B – L model Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages (up) 016 - 34pp
Keywords cosmological phase transitions; gravitational waves / sources; physics of the early universe; supersymmetry and cosmology
Abstract We propose a minimal gauged U(1)(B-L) extension of the minimal supersymmetric Standard Model (MSSM) which resolves the cosmological moduli problem via thermal inflation, and realizes late-time Affleck-Dine leptogensis so as to generate the right amount of baryon asymmetry at the end of thermal inflation. The present relic density of dark matter can be explained by sneutrinos, MSSM neutralinos, axinos, or axions. Cosmic strings from U(1)(B-L) breaking are very thick, and so the expected stochastic gravitational wave background from cosmic string loops has a spectrum different from the one in the conventional Abelian-Higgs model, as would be distinguishable at least at LISA and DECIGO. The characteristic spectrum is due to a flat potential, and may be regarded as a hint of supersymmetry. Combined with the resolution of moduli problem, the expected signal of gravitational waves constrains the U(1)(B-L) breaking scale to be O(10(12-13)) GeV. Interestingly, our model provides a natural possibility for explaining the observed ultra-high-energy cosmic rays thanks to the fact that the core width of strings in our scenario is very large, allowing a large enhancement of particle emissions from the cusps of string loops. Condensation of LHu flat-direction inside of string cores arises inevitably and can also be the main source of the ultra-high-energy cosmic rays accompanied by ultra-high-energy lightest supersymmetric particles.
Address [Jeong, Kwang Sik] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea, Email: ksjeong@pusan.ac.kr;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001149204000015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5992
Permanent link to this record