Bellomo, N., Bellini, E., Hu, B., Jimenez, R., Pena-Garay, C., & Verde, L. (2017). Hiding neutrino mass in modified gravity cosmologies. J. Cosmol. Astropart. Phys., 02(2), 043–12pp.
Abstract: Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.
|
Oldengott, I. M., Barenboim, G., Kahlen, S., Salvado, J., & Schwarz, D. J. (2019). How to relax the cosmological neutrino mass bound. J. Cosmol. Astropart. Phys., 04(4), 049–18pp.
Abstract: We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, N-eff, and the neutrino mass, m(nu). Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out clearly before: cosmology allows that neutrinos have larger masses if their average momentum is larger than that of a perfectly thermal distribution. Here we provide an example in which the mass limits are relaxed by a factor of two.
|
Benso, C., Schwetz, T., & Vatsyayan, D. (2025). Large neutrino mass in cosmology and keV sterile neutrino dark matter from a dark sector. J. Cosmol. Astropart. Phys., 04(4), 054–32pp.
Abstract: We consider an extended seesaw model which generates active neutrino masses via the usual type-I seesaw and leads to a large number of massless fermions as well as a sterile neutrino dark matter (DM) candidate in the O(10-100) keV mass range. The dark sector comes into thermal equilibrium with Standard Model neutrinos after neutrino decoupling and before recombination via a U(1) gauge interaction in the dark sector. This suppresses the abundance of active neutrinos and therefore reconciles sizeable neutrino masses with cosmology. The DM abundance is determined by freeze-out in the dark sector, which allows avoiding bounds from X-ray searches. Our scenario predicts a slight increase in the effective number of neutrino species Neff at recombination, potentially detectable by future CMB missions.
|
Bertolez-Martinez, T., Esteban, I., Hajjar, R., Mena, O., & Salvado, J. (2025). Origin of cosmological neutrino mass bounds: background versus perturbations. J. Cosmol. Astropart. Phys., 06(6), 058–37pp.
Abstract: The cosmological upper bound on the total neutrino mass is the dominant limit on this fundamental parameter. Recent observations soon to be improved have strongly tightened it, approaching the lower limit set by oscillation data. Understanding its physical origin, robustness, and model-independence becomes pressing. Here, we explicitly separate for the first time the two distinct cosmological neutrino-mass effects: the impact on background evolution, related to the energy in neutrino masses; and the “kinematic” impact on perturbations, related to neutrino free-streaming. We scrutinize how they affect CMB anisotropies, introducing two effective masses enclosing background ( mBackg. nu ) and perturbations ( mPert. nu) effects. We analyze CMB data, finding that the neutrino-mass bound is mostly a background measurement, i.e., how the neutrino energy density evolves with time. The bound on the “kinematic” variable mPert. nu is largely relaxed, mPert. nu <0.8 eV. This work thus adds clarity to the physical origin of the cosmological neutrino-mass bound, which is mostly a measurement of the neutrino equation of state, providing also hints to evade such a bound.
|
Cai, Y., Herrero-Garcia, J., Schmidt, M. A., Vicente, A., & Volkas, R. R. (2017). From the Trees to the Forest: A Review of Radiative Neutrino Mass Models. Front. Physics, 5, 63–56pp.
Abstract: A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.
|
Jiang, J. Q., Giare, W., Garzai, S., Dainotti, M. G., Di Valentino, E., Mena, O., et al. (2025). Neutrino cosmology after DESI: tightest mass upper limits, preference for the normal ordering, and tension with terrestrial observations. J. Cosmol. Astropart. Phys., 01(1), 153–43pp.
Abstract: The recent DESI Baryon Acoustic Oscillation measurements have led to tight upper limits on the neutrino mass sum, potentially in tension with oscillation constraints requiring Sigma m(nu) greater than or similar to 0.06 eV. Under the physically motivated assumption of positive Sigma m(nu), we study the extent to which these limits are tightened by adding other available cosmological probes, and robustly quantify the preference for the normal mass ordering over the inverted one, as well as the tension between cosmological and terrestrial data. Combining DESI data with Cosmic Microwave Background measurements and several late-time background probes, the tightest 2 sigma limit we find without including a local H-0 prior is Sigma m(nu) < 0.05 eV. This leads to a strong preference for the normal ordering, with Bayes factor relative to the inverted one of 46.5. Depending on the dataset combination and tension metric adopted, we quantify the tension between cosmological and terrestrial observations as ranging between 2.5 sigma and 5 sigma. These results are strenghtened when allowing for a time-varying dark energy component with equation of state lying in the physically motivated non-phantom regime, w(z) >= -1, highlighting an interesting synergy between the nature of dark energy and laboratory probes of the mass ordering. If these tensions persist and cannot be attributed to systematics, either or both standard neutrino (particle) physics or the underlying cosmological model will have to be questioned.
|
Bonilla, C., Ma, E., Peinado, E., & Valle, J. W. F. (2016). Two-loop Dirac neutrino mass and WIMP dark matter. Phys. Lett. B, 762, 214–218.
Abstract: We propose a “scotogenic” mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two-loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical Diraconthat induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhances sensitivities to spin-independent WIMP dark matter search below m(h)/2.
|
Bonilla, C., Lamprea, J. M., Peinado, E., & Valle, J. W. F. (2018). Flavour-symmetric type-II Dirac neutrino seesaw mechanism. Phys. Lett. B, 779, 257–261.
Abstract: We propose a Standard Model extension with underlying A(4) flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the “golden” flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit[ 1] we derive restrictions on the oscillation parameters, such as a correlation between delta(CP) and m(nu lightest).
|
Meloni, D., Morisi, S., & Peinado, E. (2011). Neutrino phenomenology and stable dark matter with A(4). Phys. Lett. B, 697(4), 339–342.
Abstract: We present a model based on the A(4) non-Abelian discrete symmetry leading to a predictive five-parameter neutrino mass matrix and providing a stable dark matter candidate. We found an interesting correlation among the atmospheric and the reactor angles which predicts theta(23) similar to pi/4for very small reactor angle and deviation from maximal atmospheric mixing for large theta(13). Only normal neutrino mass spectrum is possible and the effective mass entering the neutrinoless double beta decay rate is constrained to be vertical bar m(ee)vertical bar > 4 x 10(-4) eV.
|
Morisi, S., & Peinado, E. (2011). Admixture of quasi-Dirac and Majorana neutrinos with tri-bimaximal mixing. Phys. Lett. B, 701(4), 451–457.
Abstract: We propose a realization of the so-called bimodal/schizophrenic model proposed recently. We assume 54, the permutation group of four objects as flavor symmetry giving tri-bimaximal lepton mixing at leading order. In these models the second massive neutrino state is assumed quasi-Dirac and the remaining neutrinos are Majorana states. In the case of inverse mass hierarchy, the lower bound on the neutrinoless double beta decay parameter m(ee) is about two times that of the usual lower bound, within the range of sensitivity of the next generation of experiments.
|