toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alcaide, J.; Chala, M.; Santamaria, A. url  doi
openurl 
  Title LHC signals of radiatively-induced neutrino masses and implications for the Zee-Babu model Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 779 Issue Pages 107-116  
  Keywords Lepton-number violation; LHC searches; Higgs sector; Doubly-charged scalars  
  Abstract Contrary to the see-saw models, extended Higgs sectors leading to radiatively-induced neutrino masses do require the extra particles to be at the TeV scale. However, these new states have often exotic decays, to which experimental LHC searches performed so far, focused on scalars decaying into pairs of same-sign leptons, are not sensitive. In this paper we show that their experimental signatures can start to be tested with current LHC data if dedicated multi-region analyses correlating different observables are used. We also provide high-accuracy estimations of the complicated Standard Model backgrounds involved. For the case of the Zee-Babu model, we show that regions not yet constrained by neutrino data and low-energy experiments can be already probed, while most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC.  
  Address [Chala, Mikael] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: mikael.chala@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429098900012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3565  
Permanent link to this record
 

 
Author Alcaide, J.; Das, D.; Santamaria, A. url  doi
openurl 
  Title A model of neutrino mass and dark matter with large neutrinoless double beta decay Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 049 - 21pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract We propose a model where neutrino masses are generated at three loop order but neutrinoless double beta decay occurs at one loop. Thus we can have large neutrinoless double beta decay observable in the future experiments even when the neutrino masses are very small. The model receives strong constraints from the neutrino data and lepton flavor violating decays, which substantially reduces the number of free parameters. Our model also opens up the possibility of having several new scalars below the TeV regime, which can be explored at the collider experiments. Additionally, our model also has an unbroken Z(2) symmetry which allows us to identify a viable Dark Matter candidate.  
  Address [Alcaide, Julien] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: julien.alcaide@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399275900008 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3067  
Permanent link to this record
 

 
Author Alcaide, J.; Salvado, J.; Santamaria, A. url  doi
openurl 
  Title Fitting flavour symmetries: the case of two-zero neutrino mass textures Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 164 - 18pp  
  Keywords Neutrino Physics; Quark Masses and SM Parameters  
  Abstract We present a numeric method for the analysis of the fermion mass matrices predicted in flavour models. The method does not require any previous algebraic work, it offers a chi(2) comparison test and an easy estimate of confidence intervals. It can also be used to study the stability of the results when the predictions are disturbed by small perturbations. We have applied the method to the case of two-zero neutrino mass textures using the latest available fits on neutrino oscillations, derived the available parameter space for each texture and compared them. Textures A(1) and A(2) seem favoured because they give a small chi(2), allow for large regions in parameter space and give neutrino masses compatible with Cosmology limits. The other “allowed” textures remain allowed although with a very constrained parameter space, which, in some cases, could be in conflict with Cosmology. We have also revisited the “forbidden” textures and studied the stability of the results when the texture zeroes are not exact. Most of the forbidden textures remain forbidden, but textures F-1 and F-3 are particularly sensitive to small perturbations and could become allowed.  
  Address [Alcaide, Julien; Santamaria, Arcadi] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Valencia, Spain, Email: julien.alcaide@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000440091700010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3680  
Permanent link to this record
 

 
Author Aldana, M.; Lledo, M.A. url  doi
openurl 
  Title The Fuzzy Bit Type Journal Article
  Year 2023 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 15 Issue 12 Pages 2103 - 25pp  
  Keywords fuzzy sets; quantum logic; multivalued logic; Quantum Mechanics  
  Abstract In this paper, the formulation of Quantum Mechanics in terms of fuzzy logic and fuzzy sets is explored. A result by Pykacz, which establishes a correspondence between (quantum) logics (lattices with certain properties) and certain families of fuzzy sets, is applied to the Birkhoff-von Neumann logic, the lattice of projectors of a Hilbert space. Three cases are considered: the qubit, two qubits entangled, and a qutrit 'nested' inside the two entangled qubits. The membership functions of the fuzzy sets are explicitly computed and all the connectives of the fuzzy sets are interpreted as operations with these particular membership functions. In this way, a complete picture of the standard quantum logic in terms of fuzzy sets is obtained for the systems considered.  
  Address [Aldana, Milagrosa] Univ Simon Bolivar, Dept Ciencias Tierra, Valle De Sartenejas 89000, Baruta, Venezuela, Email: maldana@usb.ve;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131238400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5962  
Permanent link to this record
 

 
Author Alekhin, S. et al; Hernandez, P. url  doi
openurl 
  Title A facility to search for hidden particles at the CERN SPS: the SHiP physics case Type Journal Article
  Year 2016 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 79 Issue 12 Pages 124201 - 137pp  
  Keywords beyond the standard model physics; intensity frontier experiment; hidden sectors; heavy neutral leptons; dark photons  
  Abstract This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, tau -> 3 μand to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.  
  Address [Alekhin, Sergey] DESY, Platanenallee 6, D-15738 Zeuthen, Germany, Email: oleg.ruchayskiy@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387025400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2852  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva