|   | 
Details
   web
Records
Author Greynat, D.; de Rafael, E.; Vulvert, G.
Title Asymptotic behaviour of pion-pion total cross-sections Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 107 - 21pp
Keywords QCD Phenomenology; Phenomenological Models
Abstract We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the pi pi total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log(2)s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for pi(+)pi(-), pi(+/-)pi(0) and pi(0)pi(0) scattering within the framework of the constituent chiral quark model (C chi QM) in the limit of a large number of colours N-c and discuss their asymptotic behaviours. The same pi pi cross sections are also discussed within the general framework of Large-N-c QCD and we show that it is possible to make an Ansatz for the isospin I = 1 and I = 0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N-c counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the sigma(total)(pi +/-pi 0)(s) cross section predicted by the CxQM with the high energy behaviour predicted by the Large-N-c Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp scattering total cross sections.
Address [Greynat, David] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy, Email: david.greynat@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000333803000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1747
Permanent link to this record
 

 
Author Jueid, A.; Kip, J.; Ruiz de Austri, R.; Skands, P.
Title The Strong Force meets the Dark Sector: a robust estimate of QCD uncertainties for anti-matter dark matter searches Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 119 - 48pp
Keywords Cosmic Rays; Particle Nature of Dark Matter; Specific QCD Phenomenology
Abstract In dark-matter annihilation channels to hadronic final states, stable particles – such as positrons, photons, antiprotons, and antineutrinos – are produced via complex sequences of phenomena including QED/QCD radiation, hadronisation, and hadron decays. These processes are normally modelled by Monte Carlo (MC) event generators whose limited accuracy imply intrinsic QCD uncertainties on the predictions for indirect-detection experiments like Fermi-LAT, Pamela, IceCube or Ams-02. In this article, we perform a comprehensive analysis of QCD uncertainties, meaning both perturbative and nonperturbative sources of uncertainty are included – estimated via variations of MC renormalization-scale and fragmentation-function parameters, respectively – in antimatter spectra from dark-matter annihilation, based on parametric variations of the Pythia 8 event generator. After performing several retunings of light-quark fragmentation functions, we define a set of variations that span a conservative estimate of the QCD uncertainties. We estimate the effects on antimatter spectra for various annihilation channels and final-state particle species, and discuss their impact on fitted values for the dark-matter mass and thermally-averaged annihilation cross section. We find dramatic impacts which can go up to O(10%) for the annihilation cross section. We provide the spectra in tabulated form including QCD uncertainties and code snippets to perform fast dark-matter fits, in this github repository.
Address [Jueid, Adil] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Particle Theory & Cosmol Grp, Daejeon 34126, South Korea, Email: adiljueid@ibs.re.kr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001165531600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5956
Permanent link to this record
 

 
Author Kleiss, R.H.P.; Malamos, I.; Papadopoulos, C.G.; Verheyen, R.
Title Counting to one: reducibility of one- and two-loop amplitudes at the integrand level Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 038 - 24pp
Keywords QCD Phenomenology; NLO Computations
Abstract Calculation of amplitudes in perturbative quantum field theory involve large loop integrals. The complexity of those integrals, in combination with the large number of Feynman diagrams, make the calculations very difficult. Reduction methods proved to be very helpful, lowering the number of integrals that need to be actually calculated. Especially reduction at the integrand level improves the speed and set-up of these calculations. In this article we demonstrate, by counting the numbers of tensor structures and independent coefficients, how to write such relations at the integrand level for one-and two-loop amplitudes. We clarify their connection to the so-called spurious terms at one loop and discuss their structure in the two-loop case. This method is also applicable to higher loops, and the results obtained apply to both planar and non-planar diagrams.
Address [Kleiss, Ronald H. P.; Verheyen, Rob] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands, Email: R.Kleiss@science.ru.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000313123800038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1346
Permanent link to this record
 

 
Author Llanes Jurado, J.; Rodrigo, G.; Torres Bobadilla, W.J.
Title From Jacobi off-shell currents to integral relations Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 122 - 22pp
Keywords NLO Computations; QCD Phenomenology
Abstract In this paper, we study off-shell currents built from the Jacobi identity of the kinematic numerators of gg -> X with X = ss, q (q) over bar, gg. We find that these currents can be schematically written in terms of three-point interaction Feynman rules. This representation allows for a straightforward understanding of the Colour-Kinematics duality as well as for the construction of the building blocks for the generation of higher-multiplicity tree-level and multi-loop numerators. We also provide one-loop integral relations through the Loop-Tree duality formalism with potential applications and advantages for the computation of relevant physical processes at the Large Hadron Collider. We illustrate these integral relations with the explicit examples of QCD one-loop numerators of gg -> ss.
Address [Llanes Jurado, Jose; Rodrigo, German; Torres Bobadilla, William J.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: jollaju@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000418560700004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3431
Permanent link to this record
 

 
Author Pich, A.; Rodriguez-Sanchez, A.
Title Violations of quark-hadron duality in low-energy determinations of alpha(s) Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 145 - 42pp
Keywords The Strong Coupling; Semi-Leptonic Decays; Specific QCD Phenomenology; Chiral Lagrangian
Abstract Using the spectral functions measured in tau decays, we investigate the actual numerical impact of duality violations on the extraction of the strong coupling. These effects are tiny in the standard alpha(s)(m(tau)(2)) determinations from integrated distributions of the hadronic spectrum with pinched weights, or from the total tau hadronic width. The pinched-weight factors suppress very efficiently the violations of duality, making their numerical effects negligible in comparison with the larger perturbative uncertainties. However, combined fits of alpha(s) and duality-violation parameters, performed with non-protected weights, are subject to large systematic errors associated with the assumed modelling of duality-violation effects. These uncertainties have not been taken into account in the published analyses, based on specific models of quark-hadron duality.
Address [Pich, Antonio] Univ Valencia, Dept Fis Teor, CSIC, IFIC, Parque Cient,Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: Antonio.Pich@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000831256400009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5303
Permanent link to this record