|   | 
Details
   web
Records
Author Capozzi, F.; Saviano, N.
Title Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 2 Pages 94 - 23pp
Keywords astrophysical neutrinos; neutrino oscillations; supernovae; neutron star mergers; early Universe; sterile neutrinos
Abstract Despite being a well understood phenomenon in the context of current terrestrial experiments, neutrino flavor conversions in dense astrophysical environments probably represent one of the most challenging open problems in neutrino physics. Apart from being theoretically interesting, such a problem has several phenomenological implications in cosmology and in astrophysics, including the primordial nucleosynthesis of light elements abundance and other cosmological observables, nucleosynthesis of heavy nuclei, and the explosion of massive stars. In this review, we briefly summarize the state of the art on this topic, focusing on three environments: early Universe, core-collapse supernovae, and compact binary mergers.
Address [Capozzi, Francesco] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, Paterna 46980, Spain, Email: fcapozzi@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762069300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5146
Permanent link to this record
 

 
Author Ellis, J.; Mavromatos, N.E.; Sakharov, A.S.; Sarkisyan-Grinbaum, E.K.
Title Limits on neutrino Lorentz violation from multimessenger observations of TXS 0506+056 Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 789 Issue Pages 352-355
Keywords Lorentz violation; Multimessenger; Astrophysical neutrinos; Blazar; TXS 0506+056; IceCube
Abstract The observation by the IceCube Collaboration of a high-energy (E greater than or similar to 200 TeV) neutrino from the direction of the blazar TXS 0506+056 and the coincident observations of enhanced gamma-ray emissions from the same object by MAGIC and other experiments can be used to set stringent constraints on Lorentz violation in the propagation of neutrinos that is linear in the neutrino energy: Delta v = -E/M-1, where Delta v is the deviation from the velocity of light, and M-1 is an unknown high energy scale to be constrained by experiment. Allowing for a difference in neutrino and photon propagation times of similar to 10 days, we find that M-1 greater than or similar to 3 x 10(16) GeV. This improves on previous limits on linear Lorentz violation in neutrino propagation by many orders of magnitude, and the same is true for quadratic Lorentz violation.
Address [Ellis, John; Mavromatos, Nikolaos E.] Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: Alexandre.Sakharov@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000457165400047 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3900
Permanent link to this record