toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Oliver, J.F.; Rafecas, M. doi  openurl
  Title Improving the singles rate method for modeling accidental coincidences in high-resolution PET Type Journal Article
  Year 2010 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 55 Issue 22 Pages 6951-6971  
  Keywords  
  Abstract Random coincidences ('randoms') are one of the main sources of image degradation in PET imaging. In order to correct for this effect, an accurate method to estimate the contribution of random events is necessary. This aspect becomes especially relevant for high-resolution PET scanners where the highest image quality is sought and accurate quantitative analysis is undertaken. One common approach to estimate randoms is the so-called singles rate method (SR) widely used because of its good statistical properties. SR is based on the measurement of the singles rate in each detector element. However, recent studies suggest that SR systematically overestimates the correct random rate. This overestimation can be particularly marked for low energy thresholds, below 250 keV used in some applications and could entail a significant image degradation. In this work, we investigate the performance of SR as a function of the activity, geometry of the source and energy acceptance window used. We also investigate the performance of an alternative method, which we call 'singles trues' (ST) that improves SR by properly modeling the presence of true coincidences in the sample. Nevertheless, in any real data acquisition the knowledge of which singles are members of a true coincidence is lost. Therefore, we propose an iterative method, STi, that provides an estimation based on ST but which only requires the knowledge of measurable quantities: prompts and singles. Due to inter-crystal scatter, for wide energy windows ST only partially corrects SR overestimations. While SR deviations are in the range 86-300% (depending on the source geometry), the ST deviations are systematically smaller and contained in the range 4-60%. STi fails to reproduce the ST results, although for not too high activities the deviation with respect to ST is only a few percent. For conventional energy windows, i.e. those without inter-crystal scatter, the ST method corrects the SR overestimations, and deviations from the true random rate are of the order of 1% or less. In addition, in the case of conventional energy window STi results reproduce ST results and therefore the former can be used to obtain the true random rate.  
  Address [Oliver, Josep F.; Rafecas, Magdalena] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, E-46003 Valencia, Spain, Email: josep.f.oliver@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition (up) Conference  
  Notes ISI:000283789700025 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 344  
Permanent link to this record
 

 
Author Aguiar, P.; Rafecas, M.; Ortuño, J.E.; Kontaxakis, G.; Santos, A.; Pavia, J.; Rosetti, M. doi  openurl
  Title Geometrical and Monte Carlo projectors in 3D PET reconstruction Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 37 Issue 11 Pages 5691-5702  
  Keywords 3D PET; iterative reconstruction; list-mode reconstruction; ray-tracing techniques; Monte Carlo simulation; system response matrix  
  Abstract Purpose: In the present work, the authors compare geometrical and Monte Carlo projectors in detail. The geometrical projectors considered were the conventional geometrical Siddon ray-tracer (S-RT) and the orthogonal distance-based ray-tracer (OD-RT), based on computing the orthogonal distance from the center of image voxel to the line-of-response. A comparison of these geometrical projectors was performed using different point spread function (PSF) models. The Monte Carlo-based method under consideration involves an extensive model of the system response matrix based on Monte Carlo simulations and is computed off-line and stored on disk. Methods: Comparisons were performed using simulated and experimental data of the commercial small animal PET scanner rPET. Results: The results demonstrate that the orthogonal distance-based ray-tracer and Siddon ray-tracer using PSF image-space convolutions yield better images in terms of contrast and spatial resolution than those obtained after using the conventional method and the multiray-based S-RT. Furthermore, the Monte Carlo-based method yields slight improvements in terms of contrast and spatial resolution with respect to these geometrical projectors. Conclusions: The orthogonal distance-based ray-tracer and Siddon ray-tracer using PSF image-space convolutions represent satisfactory alternatives to factorizing the system matrix or to the conventional on-the-fly ray-tracing methods for list-mode reconstruction, where an extensive modeling based on Monte Carlo simulations is unfeasible.  
  Address [Aguiar, Pablo] Univ Santiago de Compostela, Dept Fis Particulas, Complexo Hosp Univ Santiago de Compostela, Fdn IDICHUS IDIS, Santiago De Compostela, Spain, Email: pablo.aguiar.fernandez@sergas.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition (up) Conference  
  Notes ISI:000283747600015 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 338  
Permanent link to this record
 

 
Author Blume, M.; Martinez-Moller, A.; Keil, A.; Navab, N.; Rafecas, M. doi  openurl
  Title Joint Reconstruction of Image and Motion in Gated Positron Emission Tomography Type Journal Article
  Year 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal IEEE Trans. Med. Imaging  
  Volume 29 Issue 11 Pages 1892-1906  
  Keywords Gating; motion compensation; positron emission tomography (PET); reconstruction  
  Abstract We present a novel intrinsic method for joint reconstruction of both image and motion in positron emission tomography (PET). Intrinsic motion compensation methods exclusively work on the measured data, without any external motion measurements. Most of these methods separate image from motion estimation: They use deformable image registration/optical flow techniques in order to estimate the motion from individually reconstructed gates. Then, the image is estimated based on this motion information. With these methods, a main problem lies in the motion estimation step, which is based on the noisy gated frames. The more noise is present, the more inaccurate the image registration becomes. As we show both visually and quantitatively, joint reconstruction using a simple deformation field motion model can compete with state-of-the-art image registration methods which use robust multilevel B-spline motion models.  
  Address [Blume, Moritz; Rafecas, Magdalena] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: moritz.blume@cs.tum.edu  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition (up) Conference  
  Notes ISI:000283941800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 340  
Permanent link to this record
 

 
Author Llosa, G.; Barrio, J.; Cabello, J.; Crespo, A.; Lacasta, C.; Rafecas, M.; Callier, S.; de la Taille, C.; Raux, L. doi  openurl
  Title Detector characterization and first coincidence tests of a Compton telescope based on LaBr3 crystals and SiPMs Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 695 Issue Pages 105-108  
  Keywords Hadron therapy; Compton imaging; LaBr3; Continuous crystal; SiPM; MPPC; G-APD  
  Abstract A Compton telescope for dose monitoring in hadron therapy consisting of several layers of continuous LaBr3 crystals coupled to silicon photomultiplier (SiPM) arrays is under development within the ENVISION project. In order to test the possibility of employing such detectors for the telescope, a detector head consisting of a continuous 16 mm x 18 mm x 5 mm LaBr3 crystal coupled to a SiPM array has been assembled and characterized, employing the SPIROC1 ASIC as readout electronics. The best energy resolution obtained at 511 key is 6.5% FWHM and the timing resolution is 3.1 ns FWHM. A position determination method for continuous crystals is being tested, with promising results. In addition, the detector has been operated in time coincidence with a second detector layer, to determine the coincidence capabilities of the system. The first tests are satisfactory, and encourage the development of larger detectors that will compose the telescope prototype.  
  Address [Llosa, G.; Barrio, J.; Cabello, J.; Crespo, A.; Lacasta, C.; Rafecas, M.] UVEG, CSIC, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: gabriela.llosa@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition (up) Conference  
  Notes WOS:000311469900020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1235  
Permanent link to this record
 

 
Author Beltrame, P. et al; Oliver, J.F.; Rafecas, M.; Solevi, P. doi  openurl
  Title The AX-PET demonstrator-Design, construction and characterization Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 654 Issue 1 Pages 546-559  
  Keywords PET; Axial geometry; Geiger-mode Avalanche Photo Diodes (G-APD); SiPM  
  Abstract Axial PET is a novel geometrical concept for Positron Emission Tomography (PET), based on layers of long scintillating crystals axially aligned with the bore axis. The axial coordinate is obtained from arrays of wavelength shifting (WLS) plastic strips placed orthogonally to the crystals. This article describes the design, construction and performance evaluation of a demonstrator set-up which consists of two identical detector modules, used in coincidence. Each module comprises 48 LYSO crystals of 100 mm length and 156 WLS strips. Crystals and strips are readout by Geiger-mode Avalanche Photo Diodes (G-APDs). The signals from the two modules are processed by fully analog front-end electronics and recorded in coincidence by a VME-based data acquisition system. Measurements with point-like (22)Na sources, with the modules used both individually and in coincidence mode, allowed for a complete performance evaluation up to the focal plane reconstruction of point sources. The results obtained are in good agreement with expectations and proved the set-up to be ready for the next evaluation phase with PET phantoms filled with radiotracers.  
  Address [Casella, C; Dissertori, G; Djambazov, L; Lustermann, W; Nessi-Tedaldi, F; Pauss, F; Renker, D; Schinzel, D] ETH, Inst Particle Phys, CH-8093 Zurich, Switzerland, Email: Chiara.Casella@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition (up) Conference  
  Notes WOS:000295765100078 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 790  
Permanent link to this record
 

 
Author Cabello, J.; Rafecas, M. doi  openurl
  Title Comparison of basis functions for 3D PET reconstruction using a Monte Carlo system matrix Type Journal Article
  Year 2012 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 57 Issue 7 Pages 1759-1777  
  Keywords  
  Abstract In emission tomography, iterative statistical methods are accepted as the reconstruction algorithms that achieve the best image quality. The accuracy of these methods relies partly on the quality of the system response matrix (SRM) that characterizes the scanner. The more physical phenomena included in the SRM, the higher the SRM quality, and therefore higher image quality is obtained from the reconstruction process. High-resolution small animal scanners contain as many as 10(3)-10(4) small crystal pairs, while the field of view (FOV) is divided into hundreds of thousands of small voxels. These two characteristics have a significant impact on the number of elements to be calculated in the SRM. Monte Carlo (MC) methods have gained popularity as a way of calculating the SRM, due to the increased accuracy achievable, at the cost of introducing some statistical noise and long simulation times. In the work presented here the SRM is calculated using MC methods exploiting the cylindrical symmetries of the scanner, significantly reducing the simulation time necessary to calculate a high statistical quality SRM and the storage space necessary. The use of cylindrical symmetries makes polar voxels a convenient basis function. Alternatively, spherically symmetric basis functions result in improved noise properties compared to cubic and polar basis functions. The quality of reconstructed images using polar voxels, spherically symmetric basis functions on a polar grid, cubic voxels and post-reconstruction filtered polar and cubic voxels is compared from a noise and spatial resolution perspective. This study demonstrates that polar voxels perform as well as cubic voxels, reducing the simulation time necessary to calculate the SRM and the disk space necessary to store it. Results showed that spherically symmetric functions outperform polar and cubic basis functions in terms of noise properties, at the cost of slightly degraded spatial resolution, larger SRM file size and longer reconstruction times. However, we demonstrate that post-reconstruction smoothing, usually applied in emission imaging to reduce the level of noise, can produce a spatial resolution degradation of similar to 50%, while spherically symmetric basis functions produce a degradation of only similar to 6%, compared to polar and cubic voxels, at the same noise level. Therefore, the image quality trade-off obtained with blobs is higher than that obtained with cubic or polar voxels.  
  Address [Cabello, Jorge; Rafecas, Magdalena] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: jorge.cabello@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition (up) Conference  
  Notes WOS:000302121000004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 955  
Permanent link to this record
 

 
Author Bolle, E.; Casella, C.; Chesi, E.; De Leo, R.; Dissertori, G.; Fanti, V.; Gillam, J.E.; Heller, M.; Joram, C.; Lustermann, W.; Nappi, E.; Oliver, J.F.; Pauss, F.; Rafecas, M.; Rudge, A.; Ruotsalainen, U.; Schinzel, D.; Schneider, T.; Seguinot, J.; Solevi, P.; Stapnes, S.; Tuna, U.; Weilhammer, P. doi  openurl
  Title AX-PET: A novel PET concept with G-APD readout Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 695 Issue Pages 129-134  
  Keywords PET; Axial geometry; Geiger-mode Avalanche Photo Diodes (G-APD); SiPM  
  Abstract The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 key and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-like Na-22 sources. Their performance in terms of energy (Renew approximate to 11.8% (FWMH) at 511 key) and spatial resolution was assessed (sigma(axial) approximate to 0.65 mm), both individually and for the two modules in coincidence. Test campaigns at ETH Zurich and at the company AAA allowed the tomographic reconstructions of more complex phantoms validating the 3D reconstruction algorithms. The concept of the AX-PET modules will be presented together with some characterization results. We describe a count rate model which allows to optimize the planing of the tomographic scans.  
  Address [Heller, M.; Joram, C.; Schneider, T.; Seguinot, J.] CERN, PH Dept, CH-1211 Geneva, Switzerland, Email: Matthieu.Heller@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition (up) Conference  
  Notes WOS:000311469900026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1236  
Permanent link to this record
 

 
Author Blume, M.; Navab, N.; Rafecas, M. doi  openurl
  Title Joint image and motion reconstruction for PET using a B-spline motion model Type Journal Article
  Year 2012 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 57 Issue 24 Pages 22pp  
  Keywords  
  Abstract We present a novel joint image and motion reconstruction method for PET. The method is based on gated data and reconstructs an image together with amotion function. The motion function can be used to transform the reconstructed image to any of the input gates. All available events (from all gates) are used in the reconstruction. The presented method uses a B-spline motion model, together with a novel motion regularization procedure that does not need a regularization parameter (which is usually extremely difficult to adjust). Several image and motion grid levels are used in order to reduce the reconstruction time. In a simulation study, the presented method is compared to a recently proposed joint reconstruction method. While the presented method provides comparable reconstruction quality, it is much easier to use since no regularization parameter has to be chosen. Furthermore, since the B-spline discretization of the motion function depends on fewer parameters than a displacement field, the presented method is considerably faster and consumes less memory than its counterpart. The method is also applied to clinical data, for which a novel purely data-driven gating approach is presented.  
  Address [Blume, Moritz; Rafecas, Magdalena] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: moritz.blume@fasterplan.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition (up) Conference  
  Notes WOS:000312106200009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1267  
Permanent link to this record
 

 
Author Llosa, G.; Barrillon, P.; Barrio, J.; Bisogni, M.G.; Cabello, J.; Del Guerra, A.; Etxebeste, A.; Gillam, J.E.; Lacasta, C.; Oliver, J.F.; Rafecas, M.; Solaz, C.; Stankova, V.; de La Taille, C. doi  openurl
  Title High performance detector head for PET and PET/MR with continuous crystals and SiPMs Type Journal Article
  Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 702 Issue Pages 3-5  
  Keywords Monolithic crystals; SiPM; MG-APD; PET; High resolution; Position determination  
  Abstract A high resolution PET detector head for small animal PET applications has been developed. The detector is composed of a 12 mm x 12 mm continuous LYSO crystal coupled to a 64-channel monolithic SiPM matrix from FBK-irst. Crystal thicknesses of 5 mm and 10 mm have been tested, both yielding an intrinsic spatial resolution around 0.7 mm FWHM with a position determination algorithm that can also provide depth-of-interaction information. The detectors have been tested in a rotating system that makes it possible to acquire tomographic data and reconstruct images of Na-22 sources. An image reconstruction method specifically adapted for continuous crystals has been employed. The Full Width at Half Maximum measured from a point source reconstructed with ML-EM was 0.7 mm with the 5 mm crystal and 0.8 mm with the 10 mm crystal.  
  Address [Llosa, G.; Barrio, J.; Cabello, J.; Etxebeste, A.; Gillam, J. E.; Lacasta, C.; Oliver, J. F.; Rafecas, M.; Solaz, C.; Stankova, V.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: gabriela.llosa@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition (up) Conference  
  Notes WOS:000314682300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1330  
Permanent link to this record
 

 
Author Gillam, J.E.; Solevi, P.; Oliver, J.F.; Rafecas, M. doi  openurl
  Title Simulated one-pass list-mode: an approach to on-the-fly system matrix calculation Type Journal Article
  Year 2013 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 58 Issue 7 Pages 2377-2394  
  Keywords  
  Abstract In the development of prototype systems for positron emission tomography a valid and robust image reconstruction algorithm is required. However, prototypes often employ novel detector and system geometries which may change rapidly under optimization. In addition, developing systems generally produce highly granular, or possibly continuous detection domains which require some level of on-the-fly calculation for retention of measurement precision. In this investigation a new method of on-the-fly system matrix calculation is proposed that provides advantages in application to such list-mode systems in terms of flexibility in system modeling. The new method is easily adaptable to complicated system geometries and available computational resources. Detection uncertainty models are used as random number generators to produce ensembles of possible photon trajectories at image reconstruction time for each datum in the measurement list. However, the result of this approach is that the system matrix elements change at each iteration in a non-repetitive manner. The resulting algorithm is considered the simulation of a one-pass list (SOPL) which is generated and the list traversed during image reconstruction. SOPL alters the system matrix in use at each iteration and so behavior within the maximum likelihood-expectation maximization algorithm was investigated. A two-pixel system and a small two dimensional imaging model are used to illustrate the process and quantify aspects of the algorithm. The two-dimensional imaging system showed that, while incurring a penalty in image resolution, in comparison to a non-random equal-computation counterpart, SOPL provides much enhanced noise properties. In addition, enhancement in system matrix quality is straightforward (by increasing the number of samples in the ensemble) so that the resolution penalty can be recovered when desired while retaining improvement in noise properties. Finally the approach is tested and validated against a standard (highly accurate) system matrix using experimental data from a prototype system-the AX-PET.  
  Address [Gillam, J. E.; Solevi, P.; Oliver, J. F.; Rafecas, M.] Univ Valencia, CSIC, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: john.gillam@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition (up) Conference  
  Notes WOS:000316181300024 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1370  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva