|   | 
Details
   web
Records
Author Granero, D.; Candela-Juan, C.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Jacob, D.; Mourtada, F.
Title Technical Note: Dosimetry of Leipzig and Valencia applicators without the plastic cap Type Journal Article
Year 2016 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 43 Issue 5 Pages 2087 - 4pp
Keywords Leipzig applicators; Valencia applicators; skin brachytherapy; Monte Carlo; dosimetry
Abstract Purpose: High dose rate (HDR) brachytherapy for treatment of small skin lesions using the Leipzig and Valencia applicators is a widely used technique. These applicators are equipped with an attachable plastic cap to be placed during fraction delivery to ensure electronic equilibrium and to prevent secondary electrons from reaching the skin surface. The purpose of this study is to report on the dosimetric impact of the cap being absent during HDR fraction delivery, which has not been explored previously in the literature. Methods: GEANT4 Monte Carlo simulations (version 10.0) have been performed for the Leipzig and Valencia applicators with and without the plastic cap. In order to validate the Monte Carlo simulations, experimental measurements using radiochromic films have been done. Results: Dose absorbed within 1 mm of the skin surface increases by a factor of 1500% for the Leipzig applicators and of 180% for the Valencia applicators. Deeper than 1 mm, the overdosage flattens up to a 10% increase. Conclusions: Differences of treating with or without the plastic cap are significant. Users must check always that the plastic cap is in place before any treatment in order to avoid overdosage of the skin. Prior to skin HDR fraction delivery, the timeout checklist should include verification of the cap placement. (C) 2016 American Association of Physicists in Medicine.
Address [Granero, D.] Hosp Gen Univ, Dept Radiat Phys, ERESA, Valencia 46014, Spain, Email: dgranero@eresa.com
Corporate Author Thesis
Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition (up) Conference
Notes WOS:000378924200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2753
Permanent link to this record
 

 
Author Piriz, G.H.; Gonzalez-Sprinberg, G.A.; Ballester, F.; Vijande, J.
Title Dosimetry of Large Field Valencia applicators for Cobalt-60-based brachytherapy Type Journal Article
Year 2024 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume Issue Pages 5pp
Keywords dosimetry; Monte Carlo; skin brachytherapy; Valencia applicators
Abstract BackgroundNon-melanoma skin cancer is one of the most common types of cancer and one of the main approaches is brachytherapy. For small lesions, the treatment of this cancer with brachytherapy can be done with two commercial applicators, one of these is the Large Field Valencia Applicators (LFVA).PurposeThe aim of this study is to test the capabilities of the LFVA to use clinically 60Co sources instead of the 192Ir ones. This study was designed for the same dwell positions and weights for both sources.MethodsThe Penelope Monte Carlo code was used to evaluate dose distribution in a water phantom when a 60Co source is considered. The LFVA design and the optimized dwell weights reported for the case of 192Ir are maintained with the only exception of the dwell weight of the central position, that was increased. 2D dose distributions, field flatness, symmetry and the leakage dose distribution around the applicator were calculated.ResultsWhen comparing the dose distributions of both sources, field flatness and symmetry remain unchanged. The only evident difference is an increase of the penumbra regions for all depths when using the 60Co source. Regarding leakage, the maximum dose within the air volume surrounding the applicator is in the order of 20% of the prescription dose for the 60Co source, but it decreases to less than 5% at about 1 cm distance.ConclusionsFlatness and symmetry remains unaltered as compared with 192Ir sources, while an increase in leakage has been observed. This proves the feasibility of using the LFVA in a larger range of clinical applications.
Address [Piriz, Gustavo H.; Gonzalez-Sprinberg, Gabriel A.] Univ Republica, Fac Sci, Med Phys Unit, Montevideo, Uruguay, Email: ghpiriz@gmail.com
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition (up) Conference
Notes WOS:001187737100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6011
Permanent link to this record