|   | 
Details
   web
Records
Author Villanueva-Domingo, P.; Mena, O.; Palomares-Ruiz, S.
Title A Brief Review on Primordial Black Holes as Dark Matter Type Journal Article
Year 2021 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.
Volume 8 Issue Pages 681084 - 10pp
Keywords primordial black holes; dark matter; cosmology; accretion; 21 cm cosmology; gravitational waves; cosmic microwave background; microlensing
Abstract Primordial black holes (PBHs) represent a natural candidate for one of the components of the dark matter (DM) in the Universe. In this review, we shall discuss the basics of their formation, abundance and signatures. Some of their characteristic signals are examined, such as the emission of particles due to Hawking evaporation and the accretion of the surrounding matter, effects which could leave an impact in the evolution of the Universe and the formation of structures. The most relevant probes capable of constraining their masses and population are discussed.
Address [Villanueva-Domingo, Pablo; Mena, Olga; Palomares-Ruiz, Sergio] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-987x ISBN Medium
Area Expedition Conference
Notes WOS:000660081700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4852
Permanent link to this record
 

 
Author Giare, W.; Di Valentino, E.; Melchiorri, A.; Mena, O.
Title New cosmological bounds on hot relics: axions and neutrinos Type Journal Article
Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 505 Issue 2 Pages 2703-2711
Keywords cosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations
Abstract Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyse two different thermal processes within a realistic mixed hot dark matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel, we derive our most constraining bounds on the hot relic masses m(a) < 7.46 eV and Sigma m(nu) < 0.114 eV both at 95 percent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions, and remaining in the range of validity of the chiral perturbation theory, our most constraining bounds are improved to m(a) < 0.91 eV and Sigma m(nu) < 0.105 eV, both at 95 percent CL. Interestingly, in both cases, the total neutrino mass lies very close to the inverted neutrino mass ordering prediction. If future terrestrial double beta decay and/or long-baseline neutrino experiments find that the nature mass ordering is the inverted one, this could rule out a wide region in the currently allowed thermal axion window. Our results therefore, strongly support multi messenger searches of axions and neutrino properties, together with joint analyses of their expected sensitivities.
Address [Giare, William; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: william.giare@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000672803400085 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4912
Permanent link to this record
 

 
Author Giare, W.; Renzi, F.; Melchiorri, A.; Mena, O.; Di Valentino, E.
Title Cosmological forecasts on thermal axions, relic neutrinos, and light elements Type Journal Article
Year 2022 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 511 Issue 1 Pages 1373-1382
Keywords cosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations
Abstract One of the targets of future cosmic microwave background (CMB) and baryon acoustic oscillation measurements is to improve the current accuracy in the neutrino sector and reach a much better sensitivity on extra dark radiation in the early Universe. In this paper, we study how these improvements can be translated into constraining power for well-motivated extensions of the standard model of elementary particles that involve axions thermalized before the quantum chromodynamics (QCD) phase transition by scatterings with gluons. Assuming a fiducial Lambda cold dark matter cosmological model, we simulate future data for Stage-IV CMB-like and Dark Energy Spectroscopic Instrument (DESI)-like surveys and analyse a mixed scenario of axion and neutrino hot dark matter. We further account also for the effects of these QCD axions on the light element abundances predicted by big bang nucleosynthesis. The most constraining forecasted limits on the hot relic masses are m(a) less than or similar to 0.92 eV and n-ary sumation m(nu) less than or similar to 0.12 eV at 95 per cent Confidence Level, showing that future cosmic observations can substantially improve the current bounds, supporting multimessenger analyses of axion, neutrino, and primordial light element properties.
Address [Giare, William; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: william.giare@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000770034000012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5192
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.; Melia, F.; Lopez-Corredoira, M.; Sanchis-Gual, N.
Title Missing large-angle correlations versus even-odd point-parity imbalance in the cosmic microwave background Type Journal Article
Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 660 Issue Pages A121 - 10pp
Keywords cosmological parameters; cosmic background radiation; cosmology: observations; cosmology: theory; inflation; large-scale structure of Universe
Abstract Context. The existence of a maximum correlation angle (theta(max) & 60 greater than or similar to degrees) in the two-point angular temperature correlations of cosmic microwave background (CMB) radiation, measured by WMAP and Planck, stands in sharp contrast to the prediction of standard inflationary cosmology, in which the correlations should extend across the full sky (i.e., 180 degrees). The introduction of a hard lower cuto ff (k(min)) in the primordial power spectrum, however, leads naturally to the existence of theta(max). Among other cosmological anomalies detected in these data, an apparent dominance of odd-over-even parity multipoles has been seen in the angular power spectrum of the CMB. This feature, however, may simply be due to observational contamination in certain regions of the sky. Aims. In attempting to provide a more detailed assessment of whether this odd-over-even asymmetry is intrinsic to the CMB, we therefore proceed in this paper, first, to examine whether this odd-even parity imbalance also manifests itself in the angular correlation function and, second, to examine in detail the interplay between the presence of theta(max) and this observed anomaly. Methods. We employed several parity statistics and recalculated the angular correlation function for di fferent values of the cuto ff kmin in order to optimize the fit to the di fferent Planck 2018 data. Results. We find a phenomenological connection between these features in the data, concluding that both must be considered together in order to optimize the theoretical fit to the Planck 2018 data. Conclusions. This outcome is independent of whether the parity imbalance is intrinsic to the CMB, but if it is, the odd-over-even asymmetry would clearly point to the emergence of new physics.
Address [Sanchis-Lozano, M-A] Ctr Mixto Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Dr Moliner 50, Burjassot, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000786712000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5211
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.
Title Stringy Signals from Large-Angle Correlations in the Cosmic Microwave Background? Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 8 Pages 396 - 13pp
Keywords cosmic microwave background; angular correlations; inflation; string theory
Abstract We interpret the lack of large-angle temperature correlations and the even-odd parity imbalance observed in the cosmic microwave background (CMB) by COBE, WMAP and Planck satellite missions as a possible stringy signal ultimately stemming from a composite inflaton field (e.g., a fermionic condensate). Based on causality arguments and a Fourier analysis of the angular two-point correlation function, two infrared cutoffs k(min)(even,odd) (satisfying k(min)(even) similar or equal to 2k(min)(odd)) are introduced to the CMB power spectrum associated, respectively, with periodic and antiperiodic boundary conditions of the fermionic constituents (echoing the Neveu-Schwarz-Ramond model in superstring theory), without resorting to any particular model.
Address [Sanchis-Lozano, Miguel-Angel] Univ Valencia, Dept Theoret Phys, Doctor Moliner 50, Burjassot 46011, Spain, Email: miguel.angel.sanchis@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000845107300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5344
Permanent link to this record
 

 
Author Gariazzo, S.; Di Valentino, E.; Mena, O.; Nunes, R.C.
Title Late-time interacting cosmologies and the Hubble constant tension Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 2 Pages 023530 - 12pp
Keywords ?CDM scenario; cosmic microwave background (CMB)
Abstract In this manuscript we reassess the potential of interacting dark matter-dark energy models in solving the Hubble constant tension. These models have been proposed but also questioned as possible solutions to the H0 problem. Here we examine several interacting scenarios against cosmological observations, focusing on the important role played by the calibration of supernovae data. In order to reassess the ability of interacting dark matter-dark energy scenarios in easing the Hubble constant tension, we systematically confront their theoretical predictions using a prior on the supernovae Ia absolute magnitude MB, which has been argued to be more robust and certainly less controversial than using a prior on the Hubble constant H0. While some data combinations do not show any preference for interacting dark sectors and in some of these scenarios the clustering sigma 8 tension worsens, interacting cosmologies with a dark energy equation of state w < -1 are preferred over the canonical lambda CDM picture even with cosmic microwave background data alone and also provide values of sigma 8 in perfect agreement with those from weak lensing surveys. Future cosmological surveys will test these exotic dark energy cosmologies by accurately measuring the dark energy equation of state and its putative redshift evolution.
Address [Gariazzo, Stefano] Ist Nazl Fis Nucleare INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000843205100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5346
Permanent link to this record
 

 
Author Plaza, J.; Martinez, T.; Becares, V.; Cano-Ott, D.; Villamarin, D.; de Rada, A.P.; Mendoza, E.; Pesudo, V.; Santorelli, R.; Pena, C.; Balibrea-Correa, J.; Boeltzig, A.
Title Thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) Type Journal Article
Year 2023 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 146 Issue Pages 102793 - 9pp
Keywords Underground neutron background; Thermal neutron flux; He-3 proportional counter; Pulse shape discrimination
Abstract The thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) has been determined using several He-3 proportional counter detectors. Bare and Cd shielded counters were used in a series of long measurements. Pulse shape discrimination techniques were applied to discriminate between neutron and gamma signals as well as other intrinsic contributions. Montecarlo simulations allowed us to estimate the sensitivity of the detectors and calculate values for the background flux of thermal neutrons inside Hall-A of LSC. The obtained value is (3.5 +/- 0.8)x10(-6) n/cm(2)s, and is within an order of magnitude compared to similar facilities.
Address [Plaza, J.; Martinez, T.; Becares, V; Cano-Ott, D.; Villamarin, D.; Perez de Rada, A.; Mendoza, E.; Pesudo, V; Santorelli, R.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: julio.plaza@ciemat.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000928281600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5482
Permanent link to this record
 

 
Author De La Torre Luque, P.; Gaggero, D.; Grasso, D.; Fornieri, O.; Egberts, K.; Steppa, C.; Evoli, C.
Title Galactic diffuse gamma rays meet the PeV frontier Type Journal Article
Year 2023 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.
Volume 672 Issue Pages A58 - 11pp
Keywords diffusion; cosmic rays; Galaxy; general; gamma rays; diffuse background
Abstract The Tibet AS gamma and LHAASO collaborations recently reported the observation of a gamma-ray diffuse emission with energy up to the PeV level from the Galactic plane.Aims. We discuss the relevance of non-uniform cosmic-ray transport scenarios and the implications of these results for cosmic-ray physics.Methods. We used the DRAGON and HERMES codes to build high-resolution maps and spectral distributions of that emission for several representative models under the condition that they reproduce a wide set of local cosmic-ray data up to 100 PeV.Results. We show that the energy spectra measured by Tibet AS gamma, LHAASO, ARGO-YBJ, and Fermi-LAT in several regions of interest in the sky can all be reasonably described in terms of the emission arising by the Galactic cosmic-ray “sea”. We also show that all our models are compatible with IceTop gamma-ray upper limits.Conclusions. We compare the predictions of conventional and space-dependent transport models with those data sets. Although the Fermi-LAT, ARGO-YBJ, and LHAASO preliminary data slightly favor this scenario, due to the still large experimental errors, the poorly known source spectral shape at the highest energies, the potential role of spatial fluctuations in the leptonic component, and a possible larger-than-expected contamination due to unresolved sources, a solid confirmation requires further investigations. We discuss which measurements will be most relevant in order to resolve the remaining degeneracy.
Address [Luque, P. De La Torre] Stockholm Univ, Alba Nova, S-10691 Stockholm, Sweden, Email: pedro.delatorreluque@fysik.su.se
Corporate Author Thesis
Publisher Edp Sciences S A Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6361 ISBN Medium
Area Expedition Conference
Notes WOS:000960963900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5508
Permanent link to this record
 

 
Author Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Muñoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.
Title Influence of the background in Compton camera images for proton therapy treatment monitoring Type Journal Article
Year 2023 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 68 Issue 14 Pages 144001 - 16pp
Keywords Compton imaging; Compton camera; proton therapy; treatment monitoring; Monte Carlo simulation; image reconstruction; background
Abstract Objective. Background events are one of the most relevant contributions to image degradation in Compton camera imaging for hadron therapy treatment monitoring. A study of the background and its contribution to image degradation is important to define future strategies to reduce the background in the system. Approach. In this simulation study, the percentage of different kinds of events and their contribution to the reconstructed image in a two-layer Compton camera have been evaluated. To this end, GATE v8.2 simulations of a proton beam impinging on a PMMA phantom have been carried out, for different proton beam energies and at different beam intensities. Main results. For a simulated Compton camera made of Lanthanum (III) Bromide monolithic crystals, coincidences caused by neutrons arriving from the phantom are the most common type of background produced by secondary radiations in the Compton camera, causing between 13% and 33% of the detected coincidences, depending on the beam energy. Results also show that random coincidences are a significant cause of image degradation at high beam intensities, and their influence in the reconstructed images is studied for values of the time coincidence windows from 500 ps to 100 ns. Significance. Results indicate the timing capabilities required to retrieve the fall-off position with good precision. Still, the noise observed in the image when no randoms are considered make us consider further background rejection methods.
Address [Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Munoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.] Inst Fis Corpuscular IFIC, CSIC UV, Valencia, Spain, Email: Marina.Borja@csic.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:001022671300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5571
Permanent link to this record
 

 
Author Natochii, A. et al; Marinas, C.
Title Measured and projected beam backgrounds in the Belle II experiment at the SuperKEKB collider Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1055 Issue Pages 168550 - 21pp
Keywords Detector background; Lepton collider; Monte-Carlo simulation
Abstract The Belle II experiment at the SuperKEKB electron-positron collider aims to collect an unprecedented data set of 50 ab-1 to study CP-violation in the B-meson system and to search for Physics beyond the Standard Model. SuperKEKB is already the world's highest-luminosity collider. In order to collect the planned data set within approximately one decade, the target is to reach a peak luminosity of 6 x 1035 cm-2 s-1by further increasing the beam currents and reducing the beam size at the interaction point by squeezing the betatron function down to betay* = 0.3 mm. To ensure detector longevity and maintain good reconstruction performance, beam backgrounds must remain well controlled. We report on current background rates in Belle II and compare these against simulation. We find that a number of recent refinements have significantly improved the background simulation accuracy. Finally, we estimate the safety margins going forward. We predict that backgrounds should remain high but acceptable until a luminosity of at least 2.8 x 1035 cm-2 s-1is reached for betay* = 0.6 mm. At this point, the most vulnerable Belle II detectors, the Time-of-Propagation (TOP) particle identification system and the Central Drift Chamber (CDC), have predicted background hit rates from single-beam and luminosity backgrounds that add up to approximately half of the maximum acceptable rates.
Address [Natochii, A.; Browder, T. E.; Schueler, J.; Vahsen, S. E.] Univ Hawaii, Honolulu, HI 96822 USA, Email: natochii@hawaii.edu;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001056103200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5626
Permanent link to this record