|   | 
Details
   web
Records
Author Rinaldi, M.; Vento, V.
Title Phase transition in the holographic hard-wall model Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 11 Pages 114020 - 10pp
Keywords
Abstract A Hawking-Page phase transition between anti-de Sitter (AdS) thermal and AdS black hole was presented as a mechanism for explaining the QCD deconfinement phase transition within holographic models. In order to implement temperature dependence in the confined phase we use a hard-wall AdS/QCD model, where the geometry at low temperatures is described also by a black hole metric. We then investigate the temperature dependence of glueball states described as gravitons propagating in deformed background spaces. Finally, we use potential models to physically describe the implications of our study.
Address [Rinaldi, Matteo] INFN, Sect Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (down)
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001163660300007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5955
Permanent link to this record
 

 
Author Fanchiotti, H.; Garcia Canal, C.A.; Vento, V.
Title Energy loss of monopolium in a medium Type Journal Article
Year 2023 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume 138 Issue 9 Pages 850 - 11pp
Keywords
Abstract We study the energy loss of excited monopolium in an atomic medium. We perform a classical calculation in line with a similar calculation performed for charged particles which leads in the non-relativistic limit to the Bethe-Bloch formula except for the density dependence of the medium, which we do not consider in this paper. Our result shows that for maximally deformed Rydberg states, the ionization of monopolium in a light atomic medium is similar to that of light ions.
Address [Fanchiotti, Huner; Garcia Canal, Carlos A.] Univ La Plata, IFLP CONICET, CC 67, RA-1900 La Plata, Argentina, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (down)
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:001189275500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6001
Permanent link to this record
 

 
Author Rinaldi, M.; Vento, V.
Title Hybrid spectroscopy within the graviton soft-wall model Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 11 Pages 114030 - 13pp
Keywords
Abstract In this analysis, the so-called holographic graviton soft-wall (GSW) model, first developed to investigate the glueball spectrum, has been adopted to predict the masses of hybrids with different quantum numbers. Results have been compared with other models and lattice calculations. We have extended the GSW model by introducing two modifications based on anomalous dimensions in order to improve our agreement with other calculations and to remove the initial degeneracy not accounted for by lattice predictions. These modifications do not involve new parameters. The next step has been to identify which of our calculated states agree with the PDG data, leading to experimental hybrids. The procedure has been extended to include hybrids made of heavy quarks by incorporating the quark masses into the model.
Address [Rinaldi, Matteo] Ist Nazl Fis Nucl, Sez Perugia, Via A Pascoli, Perugia, Italy, Email: matteo.rinaldi@pg.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (down)
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001278859800009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6220
Permanent link to this record