|   | 
Details
   web
Records
Author Das, A.; Bhupal Dev, P.S.; Hosotani, Y.; Mandal, S.
Title Probing the minimal U(1)(X) model at future electron positron colliders via fermion pair-production channels Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 11 Pages 115030 - 28pp
Keywords
Abstract The minimal U(1)(X) extension of the Standard Model (SM) is a well-motivated new physics scenario, where anomaly cancellation dictates new neutral gauge boson (Z') couplings with the SM fermions in terms of the U(1)(X) charges of the new scalar fields. We investigate the SM charged fermion pair-production process for different values of these U(1)(X) charges at future e(-)e(+) colliders: e(+)e(-) -> f (f) over bar Apart from the standard gamma and Z-mediated processes, this model features additional s-channel (or both s and t-channel when f = e(-)) Z' exchange which interferes with the SM processes. We first estimate the bounds on the U(1)(X) coupling (g') and the Z' mass (M-Z') considering the latest dilepton and dijet constraints from the heavy resonance searches at the LHC. Then using the allowed values of g', we study the angular distributions, forward-backward (A(FB)), left-right (A(LB)), and left-right forward-backward (A(LR-FB)) asymmetries of the final states. We fmd that these observables can show substantial deviations from the SM results in the U(1)(X) model, thus providing a powerful probe of the multi-TeV Z' bosons at future e(+)e(-) colliders.
Address [Das, Arindam] Kyungpook Natl Univ, Dept Phys, Daegu 41566, South Korea, Email: arindamdas@oia.hokudai.ac.jp;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000822972700011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5283
Permanent link to this record
 

 
Author Mandal, S.; Miranda, O.G.; Sanchez Garcia, G.; Valle, J.W.F.; Xu, X.J.
Title High-energy colliders as a probe of neutrino properties Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 829 Issue Pages 137110 - 5pp
Keywords
Abstract The mediators of neutrino mass generation can provide a probe of neutrino properties at the next round of high-energy hadron (FCC-hh) and lepton colliders (FCC-ee/ILC/CEPC/CLIC). We show how the decays of the Higgs triplet scalars mediating the simplest seesaw mechanism can shed light on the neutrino mass scale and mass-ordering, as well as the atmospheric octant. Four-lepton signatures at the high-energy frontier may provide the discovery-site for charged lepton flavor non-conservation in nature, rather than low-energy intensity frontier experiments.
Address [Mandal, Sanjoy] Korea Inst Adv Study, Seoul 02455, South Korea, Email: smandal@kias.re.kr;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000831681800020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5301
Permanent link to this record
 

 
Author Gola, S.; Mandal, S.; Sinha, N.
Title ALP-portal majorana dark matter Type Journal Article
Year 2022 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 37 Issue Pages 2250131 - 14pp
Keywords Axion like particle; heavy neutrinos; dark matter
Abstract Axion like particles (ALPs) and right-handed neutrinos (RHNs) are two well-motivated dark matter (DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM (Majorana DM) taking into account existing constraints on ALPs. We consider the leading effective operators mediating interactions between the ALP and Standard Model (SM) particles and three RHNs to generate light neutrino masses through type-I seesaw. Further, ALP-RHN neutrino coupling is introduced to generalize the model which is restricted by the relic density and indirect detection constraint.
Address [Gola, Shivam; Sinha, Nita] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India, Email: shivamg@imsc.res.in;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000854297000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5359
Permanent link to this record
 

 
Author Batra, A.; Bharadwaj, P.; Mandal, S.; Srivastava, R.; Valle, J.W.F.
Title W-mass anomaly in the simplest linear seesaw mechanism Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 834 Issue Pages 137408 - 12pp
Keywords
Abstract The simplest linear seesaw mechanism can accommodate the new CDF-II W mass measurement. In addition to Standard Model particles, the model includes quasi-Dirac leptons, and a second, leptophilic, scalar doublet seeding small neutrino masses. Our proposal is consistent with electroweak precision tests, neutrino physics, rare decays and collider restrictions, requiring a new charged scalar below a few TeV, split in mass from the new degenerate scalar and pseudoscalar neutral Higgs bosons.
Address [Batra, Aditya; Bharadwaj, Praveen; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: adityab17@iiserb.ac.in;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000864095300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5384
Permanent link to this record
 

 
Author Batra, A.; Bharadwaj, P.; Mandal, S.; Srivastava, R.; Valle, J.W.F.
Title Phenomenology of the simplest linear seesaw mechanism Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 221 - 48pp
Keywords Specific BSM Phenomenology; Sterile or Heavy Neutrinos; Baryon; Lepton Number Violation; Other Weak Scale BSM Models
Abstract The linear seesaw mechanism provides a simple way to generate neutrino masses. In addition to Standard Model particles, it includes quasi-Dirac leptons as neutrino mass mediators, and a leptophilic scalar doublet seeding small neutrino masses. Here we review its associated physics, including restrictions from theory and phenomenology. The model yields potentially detectable μ-> e gamma rates as well as distinctive signatures in the production and decay of heavy neutrinos ( N-i) and the charged Higgs boson (H-+/-) arising from the second scalar doublet. We have found that production processes such as e(+) e(-) -> NN, e- gamma -> NH- and e(+) e(-) -> H (+) H- followed by the decay chain H-+/--> l(+/-) (i) N, N -> l`(+/-) (j) W (-/+) leads to striking lepton number violation signatures at high energies which may probe the Majorana nature of neutrinos.
Address [Batra, Aditya; Bharadwaj, Praveen; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: aditya.batra@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001039968700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5605
Permanent link to this record