|   | 
Details
   web
Records
Author Weber, M. et al; Esperante, D.
Title DONES EVO: Risk mitigation for the IFMIF-DONES facility Type Journal Article
Year 2024 Publication Nuclear Materials and Energy Abbreviated Journal Nucl. Mater. Energy
Volume 38 Issue Pages 101622 - 5pp
Keywords Signal Transmission Improvement; RF Conditioning Optimisation; Beam Extraction Device; Medical Isotopes Production; Lithium Purification; Critical Components Manufacture
Abstract The International Fusion Materials Irradiation Facility- DEMO Oriented Neutron Source (IFMIF-DONES) is a scientific infrastructure aimed to provide an intense neutron source for the qualification of materials to be used in future fusion power reactors. Its implementation is critical for the construction of the fusion DEMOnstration Power Plant (DEMO). IFMIF-DONES is a unique facility requiring a broad set of technologies. Although most of the necessary technologies have already been validated, there are still some aspects that introduce risks in the evolution of the project. In order to mitigate these risks, a consortium of companies, with the support of research centres and the funding of the CDTI (Centre for the Development of Industrial Technology and Innovation), has launched the DONES EVO Programme, which comprises six lines of research: center dot Improvement of signal transmission and integrity (planning and integration risks) center dot Optimisation of RF conditioning processes (planning and reliability risks) center dot Development of a reliable beam extraction device (reliability risks) center dot Development of technologies for the production of medical isotopes (reliability risks) center dot Improvement of critical parts of the lithium purification system (safety and reliability risks) center dot Validation of the manufacture of critical components with special materials (reliability risk). DONES EVO will focus on developing the appropriate response to the risks identified in the IFMIFDONES project through research and prototyping around the associated technologies.
Address [Weber, M.; Ibarra, A.; Maldonado, R.; Podadera, I.] DONES Espana Consortium, IFMIF, Granada, Spain
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (down)
Notes WOS:001202783400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6075
Permanent link to this record
 

 
Author Celestino-Ramirez, J.M.; Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.
Title Testing the nonunitarity of the leptonic mixing matrix at FASERv and FASERv2 Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 1 Pages L011705 - 6pp
Keywords
Abstract The FASERv experiment has detected the first neutrino events coming from LHC. Near future highstatistic neutrino samples will allow us to search for new physics within the neutrino sector. Motivated by the forthcoming promising FASERv neutrino data, and its successor, FASERv2, we study its potential for testing the unitarity of the neutrino lepton mixing matrix. Although it would be challenging for FASERv and FASERv2 to have strong constraints on this kind of new physics, we discuss its role in contributing to a future improved global analysis.
Address [Celestino-Ramirez, Jesus Miguel; Miranda, O. G.] Ctr Invest & Estudios Avanzados del IPN, Dept Fis, Apartado Postal 14-740, Ciudad De Mexio 07000, Mexico, Email: jesus.celestino@cinvestav.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference (down)
Notes WOS:001172676100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6076
Permanent link to this record
 

 
Author Oliver, S.; Rodriguez Bosca, S.; Gimenez-Alventosa, V.
Title Enabling particle transport on CAD-based geometries for radiation simulations with penRed Type Journal Article
Year 2024 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 298 Issue Pages 109091 - 11pp
Keywords Radiation transport; PENELOPE physics; Monte Carlo simulation; PenRed; CAD; Triangular surface mesh
Abstract Geometry construction is a fundamental aspect of any radiation transport simulation, regardless of the Monte Carlo code being used. Typically, this process is tedious, time-consuming, and error-prone. The conventional approach involves defining geometries using mathematical objects or surfaces. However, this method comes with several limitations, especially when dealing with complex models, particularly those with organic shapes. Furthermore, since each code employs its own format and methodology for defining geometries, sharing and reproducing simulations among researchers becomes a challenging task. Consequently, many codes have implemented support for simulating over geometries constructed via Computer-Aided Design (CAD) tools. Unfortunately, this feature is lacking in penRed and other PENELOPE physics-based codes. Therefore, the objective of this work is to implement such support within the penRed framework. New version program summary Program Title: Parallel Engine for Radiation Energy Deposition (penRed) CPC Library link to program files: https://doi.org/10.17632/rkw6tvtngy.2 Developer's repository link: https://github.com/PenRed/PenRed Code Ocean capsule: https://codeocean.com/capsule/1041417/tree Licensing provisions: GNU Affero General Public License v3 Programming language: C++ standard 2011. Journal reference of previous version: V. Gimenez-Alventosa, V. Gimenez Gomez, S. Oliver, PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE, Computer Physics Communications 267 (2021) 108065. doi:https://doi.org/10.1016/j.cpc.2021.108065. Does the new version supersede the previous version?: Yes Reasons for the new version: Implements the capability to simulate on CAD constructed geometries, among many other features and fixes. Summary of revisions: All changes applied through the code versions are summarized in the file CHANGELOG.md in the repository package. Nature of problem: While Monte Carlo codes have proven valuable in simulating complex radiation scenarios, they rely heavily on accurate geometrical representations. In the same way as many other Monte Carlo codes, penRed employs simple geometric quadric surfaces like planes, spheres and cylinders to define geometries. However, since these geometric models offer a certain level of flexibility, these representations have limitations when it comes to simulating highly intricate and irregular shapes. Anatomic structures, for example, require detailed representations of organs, tissues and bones, which are difficult to achieve using basic geometric objects. Similarly, complex devices or intricate mechanical systems may have designs that cannot be accurately represented within the constraints of such geometric models. Moreover, when the complexity of the model increases, geometry construction process becomes more difficult, tedious, time-consuming and error-prone [2]. Also, as each Monte Carlo geometry library uses its own format and construction method, reproducing the same geometry among different codes is a challenging task. Solution method: To face the problems stated above, the objective of this work is to implement the capability to simulate using irregular and adaptable meshed geometries in the penRed framework. This kind of meshes can be constructed using Computer-Aided Design (CAD) tools, the use of which is very widespread and streamline the design process. This feature has been implemented in a new geometry module named “MESH_BODY” specific for this kind of geometries. This one is freely available and usable within the official penRed package1. It can be used since penRed version 1.9.3b and above.
Address [Oliver, S.] Univ Politecn Valencia, Inst Seguridad Ind Radiofis & Medioambiental ISIRY, Cami Vera S-N, Valencia 46022, Spain
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference (down)
Notes WOS:001172840800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6077
Permanent link to this record
 

 
Author Feijoo, A.; Dai, L.R.; Abreu, L.M.; Oset, E.
Title Correlation function for the Tbb state: Determination of the binding, scattering lengths, effective ranges, and molecular probabilities Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 1 Pages 016014 - 8pp
Keywords
Abstract We perform a study of the (B*+B0), (BB+)-B-*0 correlation functions using an extension of the local hidden gauge approach which provides the interaction from the exchange of light vector mesons and gives rise to a bound state of these components in I = 0 with a binding energy of about 21 MeV. After that, we face the inverse problem of determining the low energy observables, scattering length and effective range for each channel, the possible existence of a bound state, and, if found, the couplings of such a state to each (B*+B0), (BB+)-B-*0 component as well as the molecular probabilities of each of the channels. We use the bootstrap method to determine these magnitudes and find that, with errors in the correlation function typical of present experiments, we can determine all these magnitudes with acceptable precision. In addition, the size of the source function of the experiment from where the correlation functions are measured can be also determined with a high precision.
Address [Feijoo, A.; Dai, L. R.; Oset, E.] Univ Valencia, Inst Invest Paterna, Dept Fis Teor, Ctr Mixto,CSIC, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference (down)
Notes WOS:001172361900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6078
Permanent link to this record
 

 
Author Bas i Beneito, A.; Gargalionis, J.; Herrero-Garcia, J.; Santamaria, A.; Schmidt, M.A.
Title An EFT approach to baryon number violation: lower limits on the new physics scale and correlations between nucleon decay modes Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 004 - 37pp
Keywords Baryon/Lepton Number Violation; SMEFT; Specific BSM Phenomenology
Abstract Baryon number is an accidental symmetry of the Standard Model at the Lagrangian level. Its violation is arguably one of the most compelling phenomena predicted by physics beyond the Standard Model. Furthermore, there is a large experimental effort to search for it including the Hyper-K, DUNE, JUNO, and THEIA experiments. Therefore, an agnostic, model-independent, analysis of baryon number violation using the power of Effective Field Theory is very timely. In particular, in this work we study the contribution of dimension six and seven effective operators to |triangle(B – L)| = 0, 2 nucleon decays taking into account the effects of Renormalisation Group Evolution. We obtain lower limits on the energy scale of each operator and study the correlations between different decay modes. We find that for some operators the effect of running is very significant.
Address [Bas i Beneito, Arnau; Gargalionis, John; Herrero-Garcia, Juan; Santamaria, Arcadi] Univ Valencia, Dept Fis Teor, Burjassot 46100, Spain, Email: arnau.bas@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference (down)
Notes WOS:001262559200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6181
Permanent link to this record