|   | 
Details
   web
Records
Author HADES Collaboration (Lapidus, K. et al); Diaz, J.; Gil, A.
Title The HADES-at-FAIR project Type Journal Article
Year 2012 Publication Physics of Atomic Nuclei Abbreviated Journal Phys. Atom. Nuclei
Volume 75 Issue 5 Pages 589-593
Keywords
Abstract After the completion of the experimental program at SIS18 the HADES setup will migrate to FAIR, where it will deliver high-quality data for heavy-ion collisions in an unexplored energy range of up to 8 A GeV. In this contribution, we briefly present the physics case, relevant detector characteristics and discuss the recently completed upgrade of HADES.
Address [Lapidus, K.; Chen, J. C.; Epple, E.; Fabbietti, L.; Lalik, R.; Muenzer, R.; Schmah, A.; Siebenson, J.] Excellence Cluster Origin & Struct Universe, Garching, Germany, Email: kirill.lapidus@ph.tum.de
Corporate Author Thesis
Publisher Maik Nauka/Interperiodica/Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7788 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000304621800011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1046
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Gonzalez, K.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Sorel, M.; Yahlali, N.
Title NEXT-100 Technical Design Report (TDR). Executive summary Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages T06001 - 34pp
Keywords Detector design and construction technologies and materials; Time projection chambers
Abstract In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (beta beta 0v) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 x 8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.
Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Gonzalez, K.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot, M.; Rodriguez, J.; Serra, L.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000306072000030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1097
Permanent link to this record
 

 
Author Gil, A.; Diaz, J.; Gomez-Cadenas, J.J.; Herrero, V.; Rodriguez, J.; Serra, L.; Toledo, J.; Esteve, R.; Monzo, J.M.; Monrabal, F.; Yahlali, N.
Title Front-end electronics for accurate energy measurement of double beta decays Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 695 Issue Pages 407-409
Keywords Front-end electronics; Xenon gas TPC; Energy measurement; Electroluminiscence; Double-beta decay
Abstract NEXT, a double beta decay experiment that will operate in Canfranc Underground Laboratory (Spain), aims at measuring the neutrinoless double-beta decay of the 136Xe isotope using a TPC filled with enriched Xenon gas at high pressure operated in electroluminescence mode. One technological challenge of the experiment is to achieve resolution better than 1% in the energy measurement using a plane of UV sensitive photomultipliers readout with appropriate custom-made front-end electronics. The front-end is designed to be sensitive to the single photo-electron to detect the weak primary scintillation light produced in the chamber, and also to be able to cope with the electroluminescence signal (several hundred times higher and with a duration of microseconds). For efficient primary scintillation detection and precise energy measurement of the electroluminescent signals the front-end electronics features low noise and adequate amplification. The signal shaping provided allows the digitization of the signals at a frequency as low as 40 MHz.
Address [Gil, A.; Diaz, J.; Gomez-Cadenas, J. J.; Rodriguez, J.; Serra, L.; Monrabal, F.; Yahlali, N.] Inst Fis Corpuscular CSIC UV, Valencia 46071, Spain, Email: alejandro.gil@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000311469900092 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1238
Permanent link to this record
 

 
Author Gil, A.; Blanco, A.; Castro, E.; Diaz, J.; Garzon, J.A.; Gonzalez-Diaz, D.; Fouedjio, L.; Kolb, B.W.; Palka, M.; Traxler, M.; Trebacz, R.; Zumbruch, P.
Title The slow control system of the HADES RPC wall Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 661 Issue Pages S118-S120
Keywords RPC; Resistive plate chambers; Slow control system; EPICS; 1-wire
Abstract The control and monitoring system for the new HADES RPC time of flight wall installed at GSI Helmholtzzentrum fur Schwerionenforschung GmbH (Darmstadt, Germany), is described. The slow control system controls/monitors about 6000 variables from different physical devices via a distributed architecture, which uses intensively the 1-wire (R) bus. The software implementation is based on the Experimental Physics and Industrial Control System (EPICS) software tool kit providing low cost, reliability and adaptability without requiring large hardware resources. The control and monitoring system attends five different subsystems: front-end electronics, low voltage, high voltage, gases, and detector. (C) 2010 Elsevier B.V. All rights reserved.
Address [Gil, A.; Diaz, J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46971, Spain, Email: alejandro.gil@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000311568900030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1284
Permanent link to this record
 

 
Author Blanco, A.; Belver, D.; Cabanelas, P.; Diaz, J.; Fonte, P.; Garzon, J.A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Kolb, B.; Lopes, L.; Palka, M.; Pereira, A.; Traxler, M.; Zumbruch, P.
Title RPC HADES-TOF wall cosmic ray test performance Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 661 Issue Pages S114-S117
Keywords Gaseous detectors; Timing; TOF; RPC; HADES
Abstract In this work we present results concerning the cosmic ray test, prior to the final installation and commissioning of the new Resistive Plate Chamber (RPC) Time of Flight (TOF) wall for the High-Acceptance DiElectron Spectrometer (HADES) at GSI. The TOF wall is composed of six equal sectors, each one constituted by 186 individual 4-gaps glass-aluminium shielded RPC cells distributed in six columns and 31 rows in two partially overlapping layers, covering an area of 1.26 m(2). All sectors were tested with the final Front End Electronic (FEE) and Data AcQuisition system (DAQ) together with Low Voltage (LV) and High Voltage (HV) systems. Results confirm a very uniform average system time resolution of 77 ps sigma together with an average multi-hit time resolution of 83 ps. Crosstalk levels below 1% (in average), moderate timing tails along with an average longitudinal position resolution of 8.4 mm sigma are also confirmed.
Address [Blanco, A.; Fonte, P.; Lopes, L.; Pereira, A.] LIP, Lab Instrumentacao & Fis Expt Particulas, Coimbra, Portugal, Email: alberto@coimbra.lip.pt
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000311568900029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1285
Permanent link to this record