|   | 
Details
   web
Record
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Vos, M.
Title Comprehensive measurements of t-channel single top-quark production cross sections at root S=7 TeV with the ATLAS detector Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 11 Pages 112006 - 45pp
Keywords
Abstract This article presents measurements of the t-channel single top-quark ((t) over bart) and top-antiquark ( t) total production cross sections sdtq and sd tq, their ratio Rt sdtq= sd tq, and a measurement of the inclusive production cross section sdtq tq in proton-proton collisions at ffiffiffi ps = 7 TeV at the LHC. Differential cross sections for the tq and tq processes are measured as a function of the transverse momentum and the absolute value of the rapidity of t and t, respectively. The analyzed data set was recorded with the ATLAS detector and corresponds to an integrated luminosity of 4.59 fb-1. Selected events contain one charged lepton, large missing transverse momentum, and two or three jets. The cross sections are measured by performing a binned maximum-likelihood fit to the output distributions of neural networks. The resulting measurements are sdtq 46 = 1dstat = 6dsyst pb, sd tq = 23 +/- 1dstat = 3dsyst pb, Rt = 2.04 0.13dstat +/-=0.12dsyst, and sdtq tq = 68 +/-= 2dstat = 8dsyst pb, consistent with the Standard Model expectation. The uncertainty on the measured cross sections is dominated by systematic uncertainties, while the uncertainty on Rt is mainly statistical. Using the ratio of sdtq tq_ to its theoretical prediction, and assuming that the top-quark-related CKM matrix elements obey the relation jVtbj = jVtsj; jVtdj, we determine jVtbj = 1.02 = 0.07.
Address [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference (up)
Notes WOS:000346377100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2047
Permanent link to this record