toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Di Valentino, E.; Gariazzo, S.; Giare, W.; Melchiorri, A.; Mena, O.; Renzi, F. url  doi
openurl 
  Title Novel model-marginalized cosmological bound on the QCD axion mass Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 10 Pages 103528 - 16pp  
  Keywords  
  Abstract We present model-marginalized limits on mixed hot dark matter scenarios, which consider both thermal neutrinos and thermal QCD axions. A novel aspect of our analyses is the inclusion of small-scale cosmic microwave background (CMB) observations from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT), together with those from the Planck satellite and baryon acoustic oscillation (BAO) data. After marginalizing over a number of well-motivated nonminimal background cosmologies, the tightest 95% Confidential Level (CL) upper bound we obtain is 0.21 eV, both for P m nu and ma, from the combination of ACT, Planck and BAO measurements. Restricting the analyses to the standard ?CDM picture, we find P m nu < 0.16 eV and ma < 0.18 eV, both at 95% CL Interestingly, the best background cosmology is never found within the minimal ?CDM plus hot relics, regardless of the datasets exploited in the analyses. The combination of Planck with either BAO, SPT or ACT prefers a universe with a nonzero value of the running in the primordial power spectrum with strong evidence. Small-scale CMB probes, both alone and combined with BAO, either prefer, with substantial evidence, nonflat universes (as in the case of SPT) or a model with a time varying dark energy component (as in the case of ACT).  
  Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: e.divalentino@sheffield.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000999454300009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 5554  
Permanent link to this record
 

 
Author Forconi, M.; Ruchika; Melchiorri, A.; Mena, O.; Menci, N. url  doi
openurl 
  Title Do the early galaxies observed by JWST disagree with Planck's CMB polarization measurements? Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 012 - 16pp  
  Keywords cosmological parameters from CMBR; high redshift galaxies; CMBR polarisation; reionization  
  Abstract The recent observations from the James Webb Space Telescope have led to a surprising discovery of a significant density of massive galaxies with masses of M >= 10(10.5)M(circle dot) at redshifts of approximately z similar to 10. This corresponds to a stellar mass density of roughly rho* similar to 10(6)M(circle dot) Mpc(-3). Despite making conservative assumptions regarding galaxy formation, this finding may not be compatible with the standard.CDM cosmology that is favored by observations of CMB Anisotropies from the Planck satellite. In this paper, we confirm the substantial discrepancy with Planck's results within the.CDM framework. Assuming a value of is an element of = 0.2 for the efficiency of converting baryons into stars, we indeed find that the.CDM model is excluded at more than 99.7% confidence level (C.L.). An even more significant exclusion is found for is an element of similar to 0.1, while a better agreement, but still in tension at more than 95%, is obtained for is an element of = 0.32. This tension, as already discussed in the literature, could arise either from systematics in the JWST measurements or from new physics. Here, as a last-ditch effort, we point out that disregarding the large angular scale polarization obtained by Planck, which allows for significantly larger values of the matter clustering parameter sigma(8), could lead to better agreement between Planck and JWST within the.CDM framework. Assuming.CDM and no systematics in the current JWST results, this implies either an unknown systematic error in current large angular scale CMB polarization measurements or an unidentified physical mechanism that could lower the expected amount of CMB polarization produced during the epoch of reionization. Interestingly, the model compatible with Planck temperature-only data and JWST observation also favors a higher Hubble constant H-0 = 69.0 +/- 1.1 km/s/Mpc at 68% C.L., in better agreement with observations based on SN-Ia luminosity distances.  
  Address [Forconi, Matteo; Ruchika; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: matteo.forconi@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001142721200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 5903  
Permanent link to this record
 

 
Author Pandolfi, S.; Cooray, A.; Giusarma, E.; Kolb, E.W.; Melchiorri, A.; Mena, O.; Serra, P. url  doi
openurl 
  Title Harrison-Zel'dovich primordial spectrum is consistent with observations Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 12 Pages 123509 - 6pp  
  Keywords  
  Abstract Inflation predicts primordial scalar perturbations with a nearly scale-invariant spectrum and a spectral index approximately unity [the Harrison-Zel'dovich (HZ) spectrum]. The first important step for inflationary cosmology is to check the consistency of the HZ primordial spectrum with current observations. Recent analyses have claimed that a HZ primordial spectrum is excluded at more than 99% c. l. Here we show that the HZ spectrum is only marginally disfavored if one considers a more general reionization scenario. Data from the Planck mission will settle the issue.  
  Address [Pandolfi, Stefania] Univ Roma La Sapienza, ICRA, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278555900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ elepoucu @ Serial 426  
Permanent link to this record
 

 
Author Martinelli, M.; Lopez Honorez, L.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Future CMB cosmological constraints in a dark coupled universe Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 10 Pages 103534 - 7pp  
  Keywords  
  Abstract Cosmic microwave background satellite missions as the ongoing Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.  
  Address [Martinelli, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278146700047 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ elepoucu @ Serial 429  
Permanent link to this record
 

 
Author Giusarma, E.; Corsi, M.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O.; Pandolfi, S. url  doi
openurl 
  Title Constraints on massive sterile neutrino species from current and future cosmological data Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 11 Pages 115023 - 10pp  
  Keywords  
  Abstract Sterile massive neutrinos are a natural extension of the standard model of elementary particles. The energy density of the extra sterile massive states affects cosmological measurements in an analogous way to that of active neutrino species. We perform here an analysis of current cosmological data and derive bounds on the masses of the active and the sterile neutrino states, as well as on the number of sterile states. The so-called (3 + 2) models, with three sub-eV active massive neutrinos plus two sub-eV massive sterile species, is well within the 95% CL allowed regions when considering cosmological data only. If the two extra sterile states have thermal abundances at decoupling, big bang nucleosynthesis bounds compromise the viability of (3 + 2) models. Forecasts from future cosmological data on the active and sterile neutrino parameters are also presented. Independent measurements of the neutrino mass from tritium beta-decay experiments and of the Hubble constant could shed light on sub-eV massive sterile neutrino scenarios.  
  Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292039800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ elepoucu @ Serial 660  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva