toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Heinze, M.; Malinsky, M. url  doi
openurl 
  Title Flavor structure of supersymmetric SO(10) GUTs with extended matter sector Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 3 Pages 035018 - 16pp  
  Keywords  
  Abstract We discuss in detail the flavor structure of the supersymmetric SOd(10) grand unified models with the three traditional 16-dimensional matter spinors mixed with a set of extra ten-dimensional vector multiplets which can provide the desired sensitivity of the standard model matter spectrum to the grand unified theory symmetry breakdown at the renormalizable level. We put the qualitative argument that a successful fit of the quark and lepton data requires an active participation of more than a single vector matter multiplet on a firm, quantitative ground. We find that the strict no-go obtained for the fits of the charged-sector observables in case of a single active matter 10 is relaxed if a second vector multiplet is added to the matter sector and excellent, though nontrivial, fits can be devised. Exploiting the unique calculable part of the neutrino mass matrix governed by the SUd(2)(L) triplet in the 54-dimensional Higgs multiplet, a pair of genuine predictions of the current setting is identified: a nonzero value of the leptonic 1-3 mixing close to the current 90% C.L. limit and a small leptonic Dirac CP phase are strongly preferred by all solutions with the global-fit chi(2) values below 50.  
  Address [Heinze, Martin; Malinsky, Michal] AlbaNova Univ Ctr, Royal Inst Technol KTH, Dept Theoret Phys, Sch Engn Sci, SE-10691 Stockholm, Sweden, Email: mheinze@kth.se  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287655300010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 566  
Permanent link to this record
 

 
Author Bertone, G.; Kong, K.C.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Global fits of the minimal universal extra dimensions scenario Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 3 Pages 036008 - 15pp  
  Keywords  
  Abstract In theories with universal extra dimensions (UED), the gamma(1) particle, first excited state of the hypercharge gauge boson, provides an excellent dark matter (DM) candidate. Here, we use a modified version of the SUPERBAYES code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive, in particular, the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the gamma(1) with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at similar to 10(-11) pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross sections. On the other hand, the LHC with 1 fb(-1) of data should be able to probe the current best-fit UED parameters.  
  Address [Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287655300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 567  
Permanent link to this record
 

 
Author BABAR Collaboration (del Amo Sanchez, P. et al); Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A. url  doi
openurl 
  Title Measurement of the B -> D(bar)(*) D(*) K branching fractions Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 3 Pages 032004 - 16pp  
  Keywords  
  Abstract We present a measurement of the branching fractions of the 22 decay channels of the B-0 and B+ mesons to (D) over bar (()*()) D-(*()) K, where the D-(*()) and (D) over bar (()*()) mesons are fully reconstructed. Summing the 10 neutral modes and the 12 charged modes, the branching fractions are found to be B(B-0 -> (D) over bar (()*()) D-(*()) K) = (3.68 +/- 0.10 +/- 0.24)% and B(B+ -> (D) over bar (()*()) D-(*()) K) = (4.05 +/- 0.11 +/- 0.28)%, where the first uncertainties are statistical and the second systematic. The results are based on 429 fb(-1) of data containing 471 X 10(6)B (B) over bar pairs collected at the Y(4S) resonance with the BABAR detector at the SLAC National Accelerator Laboratory.  
  Address [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286982700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 568  
Permanent link to this record
 

 
Author Bridges, M.; Cranmer, K.; Feroz, F.; Hobson, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title A coverage study of the CMSSM based on ATLAS sensitivity using fast neural networks techniques Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 012 - 23pp  
  Keywords Supersymmetry; Phenomenology  
  Abstract We assess the coverage properties of confidence and credible intervals on the CMSSM parameter space inferred from a Bayesian posterior and the profile likelihood based on an ATLAS sensitivity study. In order to make those calculations feasible, we introduce a new method based on neural networks to approximate the mapping between CMSSM parameters and weak-scale particle masses. Our method reduces the computational effort needed to sample the CMSSM parameter space by a factor of similar to 10(4) with respect to conventional techniques. We find that both the Bayesian posterior and the profile likelihood intervals can significantly over-cover and identify the origin of this effect to physical boundaries in the parameter space. Finally, we point out that the effects intrinsic to the statistical procedure are conflated with simplifications to the likelihood functions from the experiments themselves.  
  Address [Bridges, Michael; Feroz, Farhan; Hobson, Mike] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England, Email: mb435@mrao.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289295200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 610  
Permanent link to this record
 

 
Author Cederwall, B. et al; Algora, A.; Gadea, A. url  doi
openurl 
  Title Evidence for a spin-aligned neutron-proton paired phase from the level structure of Pd-92 Type Journal Article
  Year 2011 Publication Nature Abbreviated Journal Nature  
  Volume 469 Issue 7328 Pages 68-71  
  Keywords  
  Abstract Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work(1) that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing(2-6), in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus Pd-92. Gamma rays emitted following the Ni-58(Ar-36,2n)Pd-92 fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution c-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction(2-6). We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling(7,8)) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.  
  Address [Cederwall, B.; Moradi, F. Ghazi; Back, T.; Johnson, A.; Blomqvist, J.; Andgren, K.; Lagergren, K.; Liotta, R.; Qi, C.; Hadinia, B.; Khaplanov, A.; Persson, A.; Sandzelius, M.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden, Email: cederwall@nuclear.kth.se  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285921600032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 588  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva