|   | 
Details
   web
Records
Author BABAR Collaboration (Lees, J.P. et al); Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.
Title Measurement of the mass and width of the D_s1 (2536)+ meson Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 7 Pages 072003 - 14pp
Keywords
Abstract The decay width and mass of the D-s1(2536)(+) meson are measured via the decay channel D-s1(+) -> (D*+KS0) using 385 fb(-1) of data recorded with the BABAR detector in the vicinity of the Gamma(4S) resonance at the PEP-II asymmetric-energy electron-positron collider. The result for the decay width is Gamma(D-s1(+)) = 92 +/- 0.03(stat.) +/- 0.04(syst.) MeV. For the mass, a value of m(D-s1(+)) = 2535.08 +/- 0.01(stat.) +/- 0.15(syst.) MeV/c(2) is obtained. The mass difference between the D-s1(+) and the D*+ is measured to be m(D-s1(+)) – m(D*+) = 524.83 +/- 0.01(stat.) +/- 0.04(syst.) MeV/c(2), representing a significant improvement compared to the current world average. The unnatural spin-parity assignment for the D-s1(+) meson is confirmed.
Address [Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000290109300001 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 613
Permanent link to this record
 

 
Author Yamagata-Sekihara, J.; Nieves, J.; Oset, E.
Title Couplings in coupled channels versus wave functions in the case of resonances: Application to the two A(1405) states Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 1 Pages 014003 - 15pp
Keywords
Abstract In this paper we develop a formalism to evaluate wave functions in momentum and coordinate space for the resonant states dynamically generated in a unitary coupled channel approach. The on-shell approach for the scattering matrix, commonly used, is also obtained in quantum mechanics with a separable potential, which allows one to write wave functions in a trivial way. We develop useful relationships among the couplings of the dynamically generated resonances to the different channels and the wave functions at the origin. The formalism provides an intuitive picture of the resonances in the coupled channel approach, as bound states of one bound channel, which decays into open ones. It also provides an insight and practical rules for evaluating couplings of the resonances to external sources and how to deal with final state interaction in production processes. As an application of the formalism we evaluate the wave functions of the two A(1405) states in the pi Sigma, (K) over barN, and other coupled channels. It also offers a practical way to study three-body systems when two of them cluster into a resonance.
Address [Yamagata-Sekihara, J.; Oset, E.] Univ Valencia, Dept Fis Teor, Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286761200002 Approved no
Is ISI yes International Collaboration no
Call Number (down) IFIC @ pastor @ Serial 582
Permanent link to this record
 

 
Author Razzaque, S.; Jean, P.; Mena, O.
Title High energy neutrinos from novae in symbiotic binaries: The case of V407 Cygni Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 12 Pages 123012 - 5pp
Keywords
Abstract Detection of high-energy (>= 100 MeV) gamma rays by the Fermi Large Area Telescope from a nova in the symbiotic binary system V407 Cygni has opened the possibility of high-energy neutrino detection from this type of source. A thermonuclear explosion on the white dwarf surface sets off a nova shell in motion that expands and slows down in a dense surrounding medium provided by the red giant companion. Particles are accelerated in the shocks of the shell and interact with the surrounding medium to produce observed gamma rays. We show that proton-proton interaction, which is most likely responsible for producing gamma rays via neutral pion decay, produces >= 0:1 GeV neutrinos that can be detected by the current and future experiments at >= 10 GeV.
Address [Razzaque, Soebur] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA, Email: srazzaque@ssd5.nrl.navy.mil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286748300002 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 524
Permanent link to this record
 

 
Author BABAR Collaboration (del Amo Sanchez, P. et al); Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.
Title Search for the decay B-0 -> gamma gamma Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 4 Pages 032006 - 11pp
Keywords
Abstract We report the result of a search for the rare decay B-0 -> gamma gamma in 426 fb(-1) of data, corresponding to 226 x 10(6) B-0(B) over bar (0) pairs, collected on the Y(4S) resonance at the PEP-II asymmetric-energy e(+)e(-) collider using the BABAR detector. We use a maximum likelihood fit to extract the signal yield and observe 21(-12)(+13) signal events with a statistical significance of 1.8 sigma. This corresponds to a branching fraction B(B-0 -> gamma gamma) = (1.7 +/- 1.1(stat.) +/- 0.2(syst.)) X 10(-7). Based on this result, we set a 90% confidence level upper limit of B(B-0 -> gamma gamma) < 3.2 X 10(-7).
Address [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, LAPP, CNRS IN2P3, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000287035200001 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 572
Permanent link to this record
 

 
Author Barenboim, G.
Title Gravity triggered neutrino condensates Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 9 Pages 093014 - 13pp
Keywords
Abstract In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.
Address [Barenboim, Gabriela] Univ Valencia CSIC, Dept Fis Teor, E-46100 Burjassot, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000288128100001 Approved no
Is ISI yes International Collaboration no
Call Number (down) IFIC @ pastor @ Serial 535
Permanent link to this record