|   | 
Details
   web
Records
Author Abraham, R.M. et al; Garcia Soto, A.
Title Tau neutrinos in the next decade: from GeV to EeV Type Journal Article
Year 2022 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 49 Issue 11 Pages 110501 - 148pp
Keywords tau neutrinos; neutrino experiments; tau neutrino theory
Abstract Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.
Address [Abraham, Roshan Mammen; Ismail, Ahmed] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA, Email: pdenton@bnl.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000865870700001 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5377
Permanent link to this record
 

 
Author Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Pastor, S.; Tortola, M.
Title Non-unitary three-neutrino mixing in the early Universe Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 046 - 18pp
Keywords cosmological neutrinos; neutrino properties; neutrino theory
Abstract Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.
Address [Gariazzo, Stefano] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000959757500008 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5516
Permanent link to this record
 

 
Author Chakraborty, S.; Gupta, A.; Vanvlasselaer, M.
Title Anomaly induced cooling of neutron stars: a Standard Model contribution Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 030 - 23pp
Keywords neutron stars; neutrino theory
Abstract Young neutron stars cool via the emission of neutrinos from their core. A precise understanding of all the different processes producing neutrinos in the hot and degenerate matter is essential for assessing the cooling rate of such stars. The main Standard Model processes contributing to this effect are nu bremsstrahlung, mURCA among others. In this paper, we investigate another Standard Model process initiated by the Wess-Zumino-Witten term, leading to the emission of neutrino pairs via N gamma -> N nu nu over bar . We find that for proto-neutron stars, such processes with degenerate neutrons can be comparable and even dominate over the typical and well-known cooling mechanisms.
Address [Chakraborty, Sabyasachi] Indian Inst Technol, Dept Phys, Kanpur 208016, India, Email: sabyac@iitk.ac.in;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001116545800007 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5872
Permanent link to this record