Rinaldi, M., & Vento, V. (2023). Phase transition in the holographic hard-wall model. Phys. Rev. D, 108(11), 114020–10pp.
Abstract: A Hawking-Page phase transition between anti-de Sitter (AdS) thermal and AdS black hole was presented as a mechanism for explaining the QCD deconfinement phase transition within holographic models. In order to implement temperature dependence in the confined phase we use a hard-wall AdS/QCD model, where the geometry at low temperatures is described also by a black hole metric. We then investigate the temperature dependence of glueball states described as gravitons propagating in deformed background spaces. Finally, we use potential models to physically describe the implications of our study.
|
Fanchiotti, H., Garcia Canal, C. A., & Vento, V. (2023). Energy loss of monopolium in a medium. Eur. Phys. J. Plus, 138(9), 850–11pp.
Abstract: We study the energy loss of excited monopolium in an atomic medium. We perform a classical calculation in line with a similar calculation performed for charged particles which leads in the non-relativistic limit to the Bethe-Bloch formula except for the density dependence of the medium, which we do not consider in this paper. Our result shows that for maximally deformed Rydberg states, the ionization of monopolium in a light atomic medium is similar to that of light ions.
|
Rinaldi, M., & Vento, V. (2024). Hybrid spectroscopy within the graviton soft-wall model. Phys. Rev. D, 109(11), 114030–13pp.
Abstract: In this analysis, the so-called holographic graviton soft-wall (GSW) model, first developed to investigate the glueball spectrum, has been adopted to predict the masses of hybrids with different quantum numbers. Results have been compared with other models and lattice calculations. We have extended the GSW model by introducing two modifications based on anomalous dimensions in order to improve our agreement with other calculations and to remove the initial degeneracy not accounted for by lattice predictions. These modifications do not involve new parameters. The next step has been to identify which of our calculated states agree with the PDG data, leading to experimental hybrids. The procedure has been extended to include hybrids made of heavy quarks by incorporating the quark masses into the model.
|
MoEDAL Collaboration(Acharya, B. et al), Mitsou, V. A., Musumeci, E., Papavassiliou, J., Ruiz de Austri, R., Staelens, M., et al. (2024). MoEDAL Search in the CMS Beam Pipe for Magnetic Monopoles Produced via the Schwinger Effect. Phys. Rev. Lett., 133(7), 071803–7pp.
Abstract: We report on a search for magnetic monopoles (MMs) produced in ultraperipheral Pb-Pb collisions during Run 1 of the LHC. The beam pipe surrounding the interaction region of the CMS experiment was exposed to 184.07 μb-1 – 1 of Pb-Pb collisions at 2.76 TeV center-of-mass energy per collision in December 2011, before being removed in 2013. It was scanned by the MoEDAL experiment using a SQUID magnetometer to search for trapped MMs. No MM signal was observed. The two distinctive features of this search are the use of a trapping volume very close to the collision point and ultrahigh magnetic fields generated during the heavy-ion run that could produce MMs via the Schwinger effect. These two advantages allowed setting the first reliable, world-leading mass limits on MMs with high magnetic charge. In particular, the established limits are the strongest available in the range between 2 and 45 Dirac units, excluding MMs with masses of up to 80 GeV at a 95% confidence level.
|
Fanchiotti, H., Garcia Canal, C. A., & Vento, V. (2025). Do heavy monopoles hide from us? Eur. Phys. J. Plus, 140(2), 170–8pp.
Abstract: Dirac demonstrated that the existence of a single magnetic monopole in the universe could explain the discrete nature of electric charge. Magnetic monopoles naturally arise in most grand unified theories. However, the extensive experimental searches conducted thus far have not been successful. Here, we propose a mechanism in which magnetic monopoles bind deeply with neutral states, effectively hiding some of the properties of free monopoles. We explore various scenarios for these systems and analyze their detectability. In particular, one scenario is especially interesting, as it predicts a light state-an analog of an electron but with magnetic charge instead of electric charge-which we refer to as a magnetron.
|