|   | 
Details
   web
Records
Author Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.P.; Urrea, S.
Title Global constraints on non-standard neutrino interactions with quarks and electrons Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 032 - 42pp
Keywords Neutrino Mixing; Non-Standard Neutrino Properties; Neutrino Interactions
Abstract We derive new constraints on effective four-fermion neutrino non-standard interactions with both quarks and electrons. This is done through the global analysis of neutrino oscillation data and measurements of coherent elastic neutrino-nucleus scattering (CE & nu;NS) obtained with different nuclei. In doing so, we include not only the effects of new physics on neutrino propagation but also on the detection cross section in neutrino experiments which are sensitive to the new physics. We consider both vector and axial-vector neutral-current neutrino interactions and, for each case, we include simultaneously all allowed effective operators in flavour space. To this end, we use the most general parametrization for their Wilson coefficients under the assumption that their neutrino flavour structure is independent of the charged fermion participating in the interaction. The status of the LMA-D solution is assessed for the first time in the case of new interactions taking place simultaneously with up quarks, down quarks, and electrons. One of the main results of our work are the presently allowed regions for the effective combinations of non-standard neutrino couplings, relevant for long-baseline and atmospheric neutrino oscillation experiments.
Address [Coloma, Pilar; Maltoni, Michele] UAM, Inst Fis Teor IFT, CSIC, CFTMAT, Calle Nicolas Cabrera 13-15,Campus Cantoblanco, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001044930400002 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5606
Permanent link to this record
 

 
Author Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Hostert, M.; Lopez-Pavon, J.
Title Effective portals to heavy neutral leptons Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 001 - 45pp
Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos
Abstract The existence of right-handed neutrinos, or heavy neutral leptons (HNLs), is strongly motivated by the observation of neutrino masses and mixing. The mass of these new particles could lie below the electroweak scale, making them accessible to lowenergy laboratory experiments. Additional new physics at high energies can mediate new interactions between the Standard Model particles and HNLs, and is most conveniently parametrized by the neutrino Standard Model Effective Field Theory, or nu SMEFT for short. In this work, we consider the dimension six nu SMEFT operators involving one HNL field in the mass range of O(1) MeV < MN < O(100) GeV. By recasting existing experimental limits on the production and decay of new light particles, we constrain the Wilson coefficients and new physics scale of each operator as a function of the HNL mass.
Address [Fernandez-Martinez, Enrique; Gonzalez-Lopez, Manuel] Univ Autonoma Madrid, Inst Fis Teor, Campus Cantoblanco, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001067715500003 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5697
Permanent link to this record
 

 
Author De Romeri, V.; Giunti, C.; Stuttard, T.; Ternes, C.A.
Title Neutrino oscillation bounds on quantum decoherence Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 097 - 24pp
Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Mixing
Abstract We consider quantum-decoherence effects in neutrino oscillation data. Working in the open quantum system framework we adopt a phenomenological approach that allows to parameterize the energy dependence of the decoherence effects. We consider several phenomenological models. We analyze data from the reactor experiments RENO, Daya Bay and KamLAND and from the accelerator experiments NOvA, MINOS/MINOS+ and T2K. We obtain updated constraints on the decoherence parameters quantifying the strength of damping effects, which can be as low as Gamma ij less than or similar to 8 x 10-27 GeV at 90% confidence level in some cases. We also present sensitivities for the future facilities DUNE and JUNO.
Address [De Romeri, Valentina] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001118948700001 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5849
Permanent link to this record
 

 
Author Alonso-Gonzalez, D.; Amaral, D.W.P.; Bariego-Quintana, A.; Cerdeño, D.; de los Rios, M.
Title Measuring the sterile neutrino mass in spallation source and direct detection experiments Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 096 - 27pp
Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos
Abstract We explore the complementarity of direct detection (DD) and spallation source (SS) experiments for the study of sterile neutrino physics. We focus on the sterile baryonic neutrino model: an extension of the Standard Model that introduces a massive sterile neutrino with couplings to the quark sector via a new gauge boson. In this scenario, the inelastic scattering of an active neutrino with the target material in both DD and SS experiments gives rise to a characteristic nuclear recoil energy spectrum that can allow for the reconstruction of the neutrino mass in the event of a positive detection. We first derive new bounds on this model based on the data from the COHERENT collaboration on CsI and LAr targets, which we find do not yet probe new areas of the parameter space. We then assess how well future SS experiments will be able to measure the sterile neutrino mass and mixings, showing that masses in the range similar to 15 – 50 MeV can be reconstructed. We show that there is a degeneracy in the measurement of the sterile neutrino mixing that substantially affects the reconstruction of parameters for masses of the order of 40 MeV. Thanks to their lower energy threshold and sensitivity to the solar tau neutrino flux, DD experiments allow us to partially lift the degeneracy in the sterile neutrino mixings and considerably improve its mass reconstruction down to 9 MeV. Our results demonstrate the excellent complementarity between DD and SS experiments in measuring the sterile neutrino mass and highlight the power of DD experiments in searching for new physics in the neutrino sector.
Address [Alonso-Gonzalez, D.; Cerdeno, D.; de los Rios, M.] IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: david.alonsogonzalez@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001129664000003 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 5886
Permanent link to this record
 

 
Author Martinez-Mirave, P.; Tamborra, I.; Tortola, M.
Title The Sun and core-collapse supernovae are leading probes of the neutrino lifetime Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 002 - 39pp
Keywords neutrino properties; solar and atmospheric neutrinos; supernova neutrinos
Abstract The large distances travelled by neutrinos emitted from the Sun and core -collapse supernovae together with the characteristic energy of such neutrinos provide ideal conditions to probe their lifetime, when the decay products evade detection. We investigate the prospects of probing invisible neutrino decay capitalising on the detection of solar and supernova neutrinos as well as the diffuse supernova neutrino background (DSNB) in the next -generation neutrino observatories Hyper-Kamiokande, DUNE, JUNO, DARWIN, and RES-NOVA. We find that future solar neutrino data will be sensitive to values of the lifetime -to -mass ratio tau 1 /m 1 and tau 2 /m 2 of O(10 – 1 -10 – 2 ) s/eV. From a core -collapse supernova explosion at 10 kpc, lifetime -to -mass ratios of the three mass eigenstates of O(10 5 ) s/eV could be tested. After 20 years of data taking, the DSNB would extend the sensitivity reach of tau 1 /m 1 to 10 8 s/eV. These results promise an improvement of about 6-15 orders of magnitude on the values of the decay parameters with respect to existing limits.
Address [Martinez-Mirave, Pablo; Tamborra, Irene] Univ Copenhagen, Niels Bohr Inst, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen, Denmark, Email: pablo.mirave@nbi.ku.dk;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001217801000002 Approved no
Is ISI yes International Collaboration yes
Call Number (up) IFIC @ pastor @ Serial 6144
Permanent link to this record