|   | 
Details
   web
Records
Author Gariazzo, S.; Mena, O.; Schwetz, T.
Title Quantifying the tension between cosmological and terrestrial constraints on neutrino masses Type Journal Article
Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 40 Issue Pages 101226 - 8pp
Keywords Neutrino masses; Neutrino mass ordering; Neutrino oscillations; Cosmological measurements of neutrino; masses
Abstract The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.
Address [Gariazzo, Stefano] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001042929800001 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 5623
Permanent link to this record
 

 
Author Ankowski, A.M. et al; Alvarez-Ruso, L.
Title Electron scattering and neutrino physics Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 12 Pages 120501 - 34pp
Keywords neutrino oscillation; CEvNS; PVES; electron scattering; neutrino scattering
Abstract A thorough understanding of neutrino-nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino-nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments-both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program-and could well be the difference between achieving or missing discovery level precision. To this end, electron-nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino-nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino-nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.
Address [Ankowski, A. M.; Friedland, A.; Butti, P.; Toro, N.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: mahn@msu.edu;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:001086874300001 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 5748
Permanent link to this record
 

 
Author Cervera-Villanueva, A.; Laing, A.; Martin-Albo, J.; Soler, F.J.P.
Title Performance of the MIND detector at a Neutrino Factory using realistic muon reconstruction Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 624 Issue 3 Pages 601-614
Keywords Neutrino Factory; Detector; Neutrino oscillation
Abstract A Neutrino Factory producing an intense beam composed of v(e)((v) over bar (e)) and (v) over bar (mu)(v(mu)) from muon decays has been shown to have the greatest sensitivity to the two currently unmeasured neutrino mixing parameters theta(13) and delta(CP) Using the wrong-sign muon signal to measure v(e)-> v(mu)((v) over bar (e) ->(v) over bar (mu)) oscillations in a 50kt Magnetised Iron Neutrino Detector (MIND) sensitivity to delta(CP) could be maintained down to small values of theta(13) However the detector efficiencies used in these previous studies were calculated assuming perfect pattern recognition In this paper MIND is reassessed taking into account for the first time a realistic pattern recognition for the muon candidate Reoptimisation of the analysis utilises a combination of methods including a multivariate analysis similar to the one used in MINOS to maintain high efficiency while suppressing backgrounds ensuring that the signal selection efficiency and the background levels are comparable or better than the ones in previous analyses As a result MIND remains the most sensitive future facility for the discovery of CP violation from neutrino oscillations.
Address [Laing, A.; Soler, F. J. P.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000285370600008 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ elepoucu @ Serial 309
Permanent link to this record