toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 635 Issue 1 Pages 92-102  
  Keywords Cosmic rays; Radio detection; Analysis software; Detector simulation  
  Abstract The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs “radio-hybrid” measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.  
  Address [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Rautenberg, J.; Szadkowski, Z.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany, Email: auger_pc@fnal.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289317100017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (up) IFIC @ pastor @ Serial 606  
Permanent link to this record
 

 
Author Langer, C.; Algora, A.; Couture, A.; Csatlos, M.; Gulyas, J.; Heil, M.; Krasznahorkay, A.; O'Donnell, J.M.; Plag, R.; Reifarth, R.; Stuhl, L.; Sonnabend, K.; Tornyi, T.; Tovesson, F. doi  openurl
  Title Simulations and developments of the Low Energy Neutron detector Array LENA Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 659 Issue 1 Pages 411-418  
  Keywords Monte Carlo simulations; Charge-exchange reactions; Scintillation detectors; Neutron detector  
  Abstract Prototypes of the Low Energy Neutron detector Array (LENA) have been tested and compared with detailed GEANT simulations. LENA will consist of plastic scintillation bars with the dimensions 1000 x 45 x 10 mm(3). The tests have been performed with gamma-ray sources and neutrons originating from the neutron-induced fission of (235)U. The simulations agreed very well with the measured response and were therefore used to simulate the response to mono-energetic neutrons with different detection thresholds. LENA will be used to detect low-energy neutrons from (p,n)-type reactions with low momentum transfer foreseen at the R(3)B and EXL setups at FAIR, Darmstadt.  
  Address [Langer, C.; Heil, M.; Plag, R.; Reifarth, R.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany, Email: c.langer@gsi.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297826100057 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (up) IFIC @ pastor @ Serial 833  
Permanent link to this record
 

 
Author AGATA Collaboration (Akkoyun, S. et al); Algora, A.; Barrientos, D.; Domingo-Pardo, C.; Egea, F.J.; Gadea, A.; Huyuk, T.; Kaci, M.; Mendez, V.; Rubio, B.; Salt, J.; Tain, J.L. url  doi
openurl 
  Title AGATA-Advanced GAmma Tracking Array Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 668 Issue Pages 26-58  
  Keywords AGATA; gamma-Ray spectroscopy; gamma-Ray tracking; HPGe detectors; Digital signal processing; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulations  
  Abstract The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.  
  Address [Boston, A. J.; Boston, H. C.; Colosimo, S.; Cooper, R. J.; Cresswell, J. R.; Dimmock, M. R.; Filmer, F.; Grint, A. N.; Harkness, L. J.; Judson, D. S.; Mather, A. R.; Moon, S.; Nelson, L.; Nolan, P. J.; Norman, M.; Oxley, D. C.; Rigby, S.; Sampson, J.; Scraggs, D. P.; Seddon, D.; Slee, M.; Stanios, T.; Thornhill, J.; Unsworth, C.; Wells, D.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England, Email: a.j.boston@liverpool.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300864200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (up) IFIC @ pastor @ Serial 923  
Permanent link to this record
 

 
Author Jaworski, G.; Palacz, M.; Nyberg, J.; de Angelis, G.; de France, G.; Di Nitto, A.; Egea, F.J.; Erduran, M.N.; Erturk, S.; Farnea, E.; Gadea, A.; Gonzalez, V.; Gottardo, A.; Huyuk, T.; Kownacki, J.; Pipidis, A.; Roeder, B.; Soderstrom, P.A.; Sanchis, E.; Tarnowski, R.; Triossi, A.; Wadsworth, R.; Valiente-Dobon, J.J. doi  openurl
  Title Monte Carlo simulation of a single detector unit for the neutron detector array NEDA Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 673 Issue Pages 64-72  
  Keywords Monte Carlo simulation; BC501; BC501A; BC537; Liquid scintillator; Neutron detector; Geant4; NEDA  
  Abstract A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental measurements performed with two existing neutron detectors, with different geometries, based on the liquid scintillator BC501.  
  Address [Jaworski, G.; Palacz, M.; Kownacki, J.; Tarnowski, R.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland, Email: palacz@slcj.uw.edu.pl  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301813500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (up) IFIC @ pastor @ Serial 944  
Permanent link to this record
 

 
Author Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Tain, J.L.; Algora, A.; Berthoumieux, E.; Colonna, N.; Domingo-Pardo, C.; Gonzalez-Romero, E.; Heil, M.; Jordan, D.; Kappeler, F.; Lampoudis, C.; Martinez, T.; Massimi, C.; Plag, R. doi  openurl
  Title Monte Carlo simulation of the n_TOF Total Absorption Calorimeter Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 671 Issue Pages 108-117  
  Keywords Monte Carlo simulation; Geant4; Neutron cross-sections; Time-of-flight; Neutron capture  
  Abstract The n_TOF Total Absorption Calorimeter (TAC) is a 4 pi BaF2 segmented detector used at CERN for measuring neutron capture cross-sections of importance for the design of advanced nuclear reactors. This work presents the simulation code that has been developed in GEANT4 for the accurate determination of the detection efficiency of the TAC for neutron capture events. The code allows to calculate the efficiency of the TAC for every neutron capture state, as a function of energy, crystal multiplicity, and counting rate. The code includes all instrumental effects such as the single crystal detection threshold and energy resolution, finite size of the coincidence time window, and signal pile-up. The results from the simulation have been validated with experimental data for a large set of electromagnetic de-excitation patterns: beta-decay of well known calibration sources, neutron capture reactions in light nuclei with well known level schemes like Ti-nat, reference samples used in (n,gamma) measurements like Au-197 and experimental data from an actinide sample like Pu-240. The systematic uncertainty in the determination of the detection efficiency has been estimated for all the cases. As a representative example, the accuracy reached for the case of Au-197(n,gamma) ranges between 0.5% and 2%, depending on the experimental and analysis conditions. Such a value matches the high accuracy required for the nuclear cross-section data needed in advanced reactor design.  
  Address [Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Gonzalez-Romero, E.; Martinez, T.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain, Email: carlos.guerrero@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301474600013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (up) IFIC @ pastor @ Serial 973  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva