toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Villaescusa-Navarro, F.; Dalal, N. url  doi
openurl 
  Title Cores and cusps in warm dark matter halos Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 024 - 16pp  
  Keywords dark matter theory; dark matter simulations; dwarfs galaxies; rotation curves of galaxies  
  Abstract The apparent presence of large core radii in Low Surface Brightness galaxies has been claimed as evidence in favor of warm dark matter. Here we show that WDM halos do not have cores that are large fractions of the halo size: typically, r(core)/r(200) less than or similar to 10(-3). This suggests an astrophysical origin for the large cores observed in these galaxies, as has been argued by other authors.  
  Address [Villaescusa-Navarro, Francisco] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: villa@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291258300024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (up) IFIC @ elepoucu @ Serial 641  
Permanent link to this record
 

 
Author Boubekeur, L.; Choi, K.Y.; Ruiz de Austri, R.; Vives, O. url  doi
openurl 
  Title The degenerate gravitino scenario Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 005 - 26pp  
  Keywords dark matter theory; leptogenesis; supersymmetry and cosmology; cosmology of theories beyond the SM  
  Abstract In this work, we explore the “degenerate gravitino” scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogenesis are reached for small splittings of order 10(-2) GeV. While for stau NLSP, temperatures of T-RH similar or equal to 4 x 10(9) GeV can be obtained even for splittings of order of tens of GeVs. This “degenerate gravitino” scenario offers a possible way out to the gravitino problem for thermal leptogenesis in supersymmetric theories.  
  Address [Boubekeur, Lotfi; Vives, Oscar] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Spain, Email: lotfi.boubekeur@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277684600028 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (up) IFIC @ elepoucu @ Serial 453  
Permanent link to this record
 

 
Author Jackson, C.B.; Servant, G.; Shaughnessy, G.; Tait, T.M.P.; Taoso, M. url  doi
openurl 
  Title Higgs in space! Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 004 - 29pp  
  Keywords dark matter theory; dark matter experiments; gamma ray experiments; cosmology of theories beyond the SM  
  Abstract We consider the possibility that the Higgs can be produced in dark matter annihilations, appearing as a line in the spectrum of gamma rays at an energy determined by the masses of the WIMP and the Higgs itself. We argue that this phenomenon occurs generally in models in which the the dark sector has large couplings to the most massive states of the SM and provide a simple example inspired by the Randall-Sundrum vision of dark matter, whose 4d dual corresponds to electroweak symmetry-breaking by strong dynamics which respect global symmetries that guarantee a stable WIMP. The dark matter is a Dirac fermion that couples to a Z' acting as a portal to the Standard Model through its strong coupling to top quarks. Annihilation into light standard model degrees of freedom is suppressed and generates a feeble continuum spectrum of gamma rays. Loops of top quarks mediate annihilation into gamma Z, gamma h, and gamma Z', providing a forest of lines in the spectrum. Such models can be probed by the Fermi/GLAST satellite and ground-based Air Cherenkov telescopes.  
  Address [Jackson, C. B.; Shaughnessy, Gabe; Tait, Tim M. P.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA, Email: jackson@hep.anl.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277684600029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (up) IFIC @ elepoucu @ Serial 454  
Permanent link to this record
 

 
Author Choi, K.Y.; Lopez-Fogliani, D.E.; Muñoz, C.; Ruiz de Austri, R. url  doi
openurl 
  Title Gamma-ray detection from gravitino dark matter decay in the μnu SSM Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 028 - 14pp  
  Keywords dark matter theory; supersymmetry and cosmology; gamma ray experiments  
  Abstract The μnu SSM provides a solution to the mu-problem of the MSSM and explains the origin of neutrino masses by simply using right-handed neutrino superfields. Given that R-parity is broken in this model, the gravitino is a natural candidate for dark matter since its lifetime becomes much longer than the age of the Universe. We consider the implications of gravitino dark matter in the μnu SSM, analyzing in particular the prospects for detecting gamma rays from decaying gravitinos. If the gravitino explains the whole dark matter component, a gravitino mass larger than 20 GeV is disfavored by the isotropic diffuse photon background measurements. On the other hand, a gravitino with a mass range between 0.1 – 20 GeV gives rise to a signal that might be observed by the FERMI satellite. In this way important regions of the parameter space of the μnu SSM can be checked.  
  Address [Choi, Ki-Young; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: kiyoung.choi@pusan.ac.kr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276103000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (up) IFIC @ elepoucu @ Serial 464  
Permanent link to this record
 

 
Author Agarwalla, S.K.; Blennow, M.; Fernandez-Martinez, E.; Mena, O. url  doi
openurl 
  Title Neutrino probes of the nature of light dark matter Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 004 - 19pp  
  Keywords dark matter experiments; neutrino detectors  
  Abstract Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-kt neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 kt liquid argon detector and a 100 kt magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 10-25 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter-nucleon spin-dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.  
  Address [Agarwalla, Sanjib Kumar; Mena, Olga] Univ Politecn Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296767000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (up) IFIC @ elepoucu @ Serial 858  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva