toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Agullo, I.; Navarro-Salas, J.; Parker, L. url  doi
openurl 
  Title Enhanced local-type inflationary trispectrum from a non-vacuum initial state Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 019 - 13pp  
  Keywords inflation; non-gaussianity; quantum field theory on curved space; cosmological perturbation theory  
  Abstract We compute the primordial trispectrum for curvature perturbations produced during cosmic inflation in models with standard kinetic terms, when the initial quantum state is not necessarily the vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for configuration in which one of the momenta, say k(3), is much smaller than the others, k(3) << k(1,2,4). For those squeezed con figurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values of order epsilon(k(1)/k(3))(2). This amplitude could be larger than the prediction of the so-called Maldacena consistency relation by a factor as large as 10(6), and could reach the sensitivity of forthcoming observations, even for single-field inflationary models.  
  Address [Agullo, Ivan] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA, Email: agullo@gravity.psu.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305415200020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 1083  
Permanent link to this record
 

 
Author Agullo, I.; Landete, A.; Navarro-Salas, J. url  doi
openurl 
  Title Electric-magnetic duality and renormalization in curved spacetimes Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 12 Pages 124067 - 7pp  
  Keywords  
  Abstract We point out that the duality symmetry of free electromagnetism does not hold in the quantum theory if an arbitrary classical gravitational background is present. The symmetry breaks in the process of renormalization, as also happens with conformal invariance. We show that a similar duality anomaly appears for a massless scalar field in 1 + 1 dimensions.  
  Address [Agullo, Ivan; Landete, Aitor] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348361600012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 2089  
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J. url  doi
openurl 
  Title Electromagnetic Duality Anomaly in Curved Spacetimes Type Journal Article
  Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 118 Issue 11 Pages 111301 - 5pp  
  Keywords  
  Abstract The source-free Maxwell action is invariant under electric-magnetic duality rotations in arbitrary spacetimes. This leads to a conserved classical Noether charge. We show that this conservation law is broken at the quantum level in the presence of a background classical gravitational field with a nontrivial Chern-Pontryagin invariant, in parallel with the chiral anomaly for massless Dirac fermions. Among the physical consequences, the net polarization of the quantum electromagnetic field is not conserved.  
  Address [Agullo, Ivan; del Rio, Adrian] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000396267100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 2964  
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J. url  doi
openurl 
  Title Gravity and handedness of photons Type Journal Article
  Year 2017 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 26 Issue 12 Pages 1742001 - 5pp  
  Keywords Quantum fields in curved spacetime; symmetry and conservation laws; electromagnetic wave propagation; anomalies  
  Abstract Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.  
  Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414411900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 3355  
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J. url  doi
openurl 
  Title Classical and quantum aspects of electric-magnetic duality rotations in curved spacetimes Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 12 Pages 125001 - 22pp  
  Keywords  
  Abstract It is well known that the source-free Maxwell equations are invariant under electric-magnetic duality rotations, F -> F cos theta +*F sin theta. These transformations are indeed a symmetry of the theory in the Noether sense. The associated constant of motion is the difference in the intensity between self-dual and anti-self-dual components of the electromagnetic field or, equivalently, the difference between the right and left circularly polarized components. This conservation law holds even if the electromagnetic field interacts with an arbitrary classical gravitational background. After reexamining these results, we discuss whether this symmetry is maintained when the electromagnetic field is quantized. The answer is in the affirmative in the absence of gravity but not necessarily otherwise. As a consequence, the net polarization of the quantum electromagnetic field fails to be conserved in curved spacetimes. This is a quantum effect, and it can be understood as the generalization of the fermion chiral anomaly to fields of spin one.  
  Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451998400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 3824  
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J. url  doi
openurl 
  Title On the Electric-Magnetic Duality Symmetry: Quantum Anomaly, Optical Helicity, and Particle Creation Type Journal Article
  Year 2018 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 10 Issue 12 Pages 763 - 14pp  
  Keywords electric-magnetic duality symmetry; quantum anomalies; optical helicity; electromagnetic polarization; particle creation  
  Abstract It is well known that not every symmetry of a classical field theory is also a symmetry of its quantum version. When this occurs, we speak of quantum anomalies. The existence of anomalies imply that some classical Noether charges are no longer conserved in the quantum theory. In this paper, we discuss a new example for quantum electromagnetic fields propagating in the presence of gravity. We argue that the symmetry under electric-magnetic duality rotations of the source-free Maxwell action is anomalous in curved spacetimes. The classical Noether charge associated with these transformations accounts for the net circular polarization or the optical helicity of the electromagnetic field. Therefore, our results describe the way the spacetime curvature changes the helicity of photons and opens the possibility of extracting information from strong gravitational fields through the observation of the polarization of photons. We also argue that the physical consequences of this anomaly can be understood in terms of the asymmetric quantum creation of photons by the gravitational field.  
  Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454725100101 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 3867  
Permanent link to this record
 

 
Author del Rio, A.; Sanchis-Gual, N.; Mewes, V.; Agullo, I.; Font, J.A.; Navarro-Salas, J. url  doi
openurl 
  Title Spontaneous Creation of Circularly Polarized Photons in Chiral Astrophysical Systems Type Journal Article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 124 Issue 21 Pages 211301 - 6pp  
  Keywords  
  Abstract This work establishes a relation between chiral anomalies in curved spacetimes and the radiative content of the gravitational field. In particular, we show that a flux of circularly polarized gravitational waves triggers the spontaneous creation of photons with net circular polarization from the quantum vacuum. Using waveform catalogs, we identify precessing binary black holes as astrophysical configurations that emit such gravitational radiation and then solve the fully nonlinear Einstein's equations with numerical relativity to evaluate the net effect. The quantum amplitude for a merger is comparable to the Hawking emission rate of the final black hole and small to be directly observed. However, the implications for the inspiral of binary neutron stars could be more prominent, as argued on symmetry grounds.  
  Address [del Rio, Adrian; Sanchis-Gual, Nicolas] Univ Lisbon, Inst Super Tecn, Ctr Astrofis & Gravitacao CENTRA, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000535679100012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 4407  
Permanent link to this record
 

 
Author del Rio, A.; Agullo, I. url  doi
openurl 
  Title Chiral fermion anomaly as a memory effect Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 10 Pages 105025 - 22pp  
  Keywords  
  Abstract We study the nonconservation of the chiral charge of Dirac fields between past and future null infinity due to the Adler-Bell-Jackiw chiral anomaly. In previous investigations [A. del Rio, Phys. Rev. D 104, 065012 (2021)], we found that this charge fails to be conserved if electromagnetic sources in the bulk emit circularly polarized radiation. In this article, we unravel yet another contribution coming from the nonzero, infrared “soft” charges of the external, electromagnetic field. This new contribution can be interpreted as another manifestation of the ordinary memory effect produced by transitions between different infrared sectors of Maxwell theory, but now on test quantum fields rather than on test classical particles. In other words, a flux of electromagnetic waves can leave a memory on quantum fermion states in the form of a permanent, net helicity. We elaborate this idea in both 1 + 1 and 3 + 1 dimensions. We also show that, in sharp contrast, gravitational infrared charges do not contribute to the fermion chiral anomaly.  
  Address [del Rio, Adrian] Univ Valencia, Dept Fis Teor, CSIC, Dr Moliner 50, Burjassot 46100, Valencia, Spain, Email: adrian.rio@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001121689000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 5864  
Permanent link to this record
 

 
Author Agullo, I.; Bonga, B.; Ribes-Metidieri, P.; Kranas, D.; Nadal-Gisbert, S. url  doi
openurl 
  Title How ubiquitous is entanglement in quantum field theory? Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 8 Pages 085005 - 25pp  
  Keywords  
  Abstract It is well known that entanglement is widespread in quantum field theory, in the following sense: every Reeh-Schlieder state contains entanglement between any two spatially separated regions. This applies, in particular, to the vacuum of a noninteracting scalar theory in Minkowski spacetime. Discussions on entanglement in field theory have focused mainly on subsystems containing infinitely many degrees of freedom-typically, the field modes that are supported within a compact region of space. In this article, we study entanglement in subsystems made of finitely many field degrees of freedom, in a free scalar theory in D + 1-dimensional Minkowski spacetime. The focus on finitely many modes of the field is motivated by the finite capabilities of real experiments. We find that entanglement between finite-dimensional subsystems is not common at all, and that one needs to carefully select the support of modes for entanglement to show up. We also find that entanglement is increasingly sparser in higher dimensions. We conclude that entanglement in Minkowski spacetime is significantly less ubiquitous than normally thought.  
  Address [Agullo, Ivan; Ribes-Metidieri, Patricia; Kranas, Dimitrios; Nadal-Gisbert, Sergi] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001157784100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ pastor @ Serial 5936  
Permanent link to this record
 

 
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L. url  doi
openurl 
  Title Hawking Radiation by Kerr Black Holes and Conformal Symmetry Type Journal Article
  Year 2010 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 105 Issue 21 Pages 211305 - 4pp  
  Keywords  
  Abstract The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.  
  Address [Agullo, Ivan; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284407400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number (down) IFIC @ elepoucu @ Serial 322  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva