|   | 
Details
   web
Records
Author Meloni, D.; Morisi, S.; Peinado, E.
Title Neutrino phenomenology and stable dark matter with A(4) Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 697 Issue 4 Pages 339-342
Keywords Flavor symmetries; Dark matter; Neutrino masses; Lepton mixing; Discrete symmetries; Neutrino less double beta decay
Abstract We present a model based on the A(4) non-Abelian discrete symmetry leading to a predictive five-parameter neutrino mass matrix and providing a stable dark matter candidate. We found an interesting correlation among the atmospheric and the reactor angles which predicts theta(23) similar to pi/4for very small reactor angle and deviation from maximal atmospheric mixing for large theta(13). Only normal neutrino mass spectrum is possible and the effective mass entering the neutrinoless double beta decay rate is constrained to be vertical bar m(ee)vertical bar > 4 x 10(-4) eV.
Address [Morisi, S.; Peinado, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: davide.meloni@physik.uni-wuerzburg.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000288300400012 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 544
Permanent link to this record
 

 
Author NEMO-3 Collaboration (Argyriades, J. et al); Diaz, J.; Martin-Albo, J.; Monrabal, F.; Novella, P.; Serra, L.; Yahlali, N.
Title Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 625 Issue 1 Pages 20-28
Keywords Scintillation; Photomultiplier; Plastic scintillators; Optical photon transport; GEANT 4; Double beta decay
Abstract We have constructed a GEANT4-based detailed software model of photon transport in plastic sontillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutnnoless double beta decay We compare our simulations to measurements using conversion electrons from a calibration source of (BI)-B-207 and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account In this article we briefly describe our modeling approach and results of our studies.
Address [Lang, K.; Pahlka, R. B.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000285432400004 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 587
Permanent link to this record
 

 
Author Morisi, S.; Peinado, E.
Title Admixture of quasi-Dirac and Majorana neutrinos with tri-bimaximal mixing Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 701 Issue 4 Pages 451-457
Keywords Neutrinoless double beta decay; Neutrino masses and mixings; Flavor symmetries; Tri-bimaximal mixing; Neutrino hierarchy; Discrete symmetries
Abstract We propose a realization of the so-called bimodal/schizophrenic model proposed recently. We assume 54, the permutation group of four objects as flavor symmetry giving tri-bimaximal lepton mixing at leading order. In these models the second massive neutrino state is assumed quasi-Dirac and the remaining neutrinos are Majorana states. In the case of inverse mass hierarchy, the lower bound on the neutrinoless double beta decay parameter m(ee) is about two times that of the usual lower bound, within the range of sensitivity of the next generation of experiments.
Address [Morisi, S; Peinado, E] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: morisi@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000292994100011 Approved no
Is ISI yes International Collaboration no
Call Number (down) IFIC @ pastor @ Serial 700
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Guinea, F.; Fogler, M.M.; Katsnelson, M.I.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J.
Title GraXe, graphene and xenon for neutrinoless double beta decay searches Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 037 - 17pp
Keywords neutrino experiments; double beta decay
Abstract We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in Xe-136. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, grapheme. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the Xe-136 isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope Xe-136 is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.
Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Monrabal, F.; Munoz Vidal, J.] CSIC, Inst Fis Corpuscular, IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000301176000038 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 987
Permanent link to this record
 

 
Author Herrero, V.; Toledo, J.; Catala, J.M.; Esteve, R.; Gil, A.; Lorca, D.; Monzo, J.M.; Sanchis, F.; Verdugo, A.
Title Readout electronics for the SiPM tracking plane in the NEXT-1 prototype Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 695 Issue Pages 229-232
Keywords Neutrino less double beta decay; Xenon gas TPC; SiPM readout; Front-end electronics; Gated integrator
Abstract NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.
Address [Herrero, V.; Toledo, J.; Catala, J. M.; Esteve, R.; Monzo, J. M.; Sanchis, F.] Univ Politecn Valencia, CIEMAT, Ctr Mixto, I3M, Valencia 46022, Spain, Email: jtoledo@eln.upv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311469900049 Approved no
Is ISI yes International Collaboration no
Call Number (down) IFIC @ pastor @ Serial 1237
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Near-intrinsic energy resolution for 30-662 keV gamma rays in a high pressure xenon electroluminescent TPC Type Journal Article
Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 708 Issue Pages 101-114
Keywords Xenon; Energy resolution; High-pressure; TPC; Electroluminescence; Neutrinoless double beta decay
Abstract We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 Xe-136 neutrino-less double beta decay (0 nu beta beta) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of similar to 1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and similar to 5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7-20 better than that of the current leading 0 nu beta beta experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0 nu beta beta search.
Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: agoldschmidt@lbl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000316192300015 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 1369
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Muñoz Vidal, J.; Pena-Garay, C.
Title Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 043 - 17pp
Keywords neutrino masses from cosmology; double beta decay
Abstract The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Sigma m(nu) = (0.32 +/- 0.11) eV. This result, if con firmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m(beta beta) involved in neutrinoless double beta decay (beta beta 0 nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based beta beta 0 nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg.year, could already have a sizeable opportunity to observe beta beta 0 nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton.year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.
Address CSIC, Inst Fis Corpuscular, IFIC, Valencia 46090, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000316989200044 Approved no
Is ISI yes International Collaboration no
Call Number (down) IFIC @ pastor @ Serial 1434
Permanent link to this record
 

 
Author Valle, J.W.F.
Title Status and implications of neutrino masses: a brief panorama Type Journal Article
Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 30 Issue 13 Pages 1530034 - 13pp
Keywords Neutrino mixing and oscillations; seesaw mechanism; quark-lepton unification; flavor symmetry; electroweak symmetry breaking; neutrinoless double beta decay; dark matter; inflation
Abstract With the historic discovery of the Higgs boson our picutre of particle physics would have been complete were it nor for the neutrino sector and cosmology. I briefly discuss the role of neutrino masses and mixing upon gauge coupling unification, electroweak breaking and the flavor sector. Time is ripe for new discoveries such as leptonic CP violation, charged lepton flavor violation and neutrinoless double beta decay. Neutrinos could also play a role is elucidating the nature of dark matter and cosmic inflation.
Address Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000353955400002 Approved no
Is ISI yes International Collaboration no
Call Number (down) IFIC @ pastor @ Serial 2211
Permanent link to this record
 

 
Author NEXT Collaboration (Renner, J. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Ionization and scintillation of nuclear recoils in gaseous xenon Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 793 Issue Pages 62-74
Keywords Dark matter; High pressure xenon gas; WIMP; Neutrino less double beta decay; Nuclear recoils
Abstract Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope a-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
Address [Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.] LBNL, Berkeley, CA 94720 USA, Email: jrenner@lbl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000355774500011 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 2247
Permanent link to this record
 

 
Author NEXT Collaboration (Ferrario, P. et al); Laing, A.; Lopez-March, N.; Gomez-Cadenas, J.J.; Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 104 - 18pp
Keywords Dark Matter; Double Beta Decay
Abstract The NEXT experiment aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Q(beta beta). This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of Na-22 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the Th-228 decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 +/- 1.4 (stat.)%, while maintaining an efficiency of 66.7 +/- 1.% for signal events.
Address [Ferrario, P.; Laing, A.; Lopez-March, N.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000370438900001 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 2560
Permanent link to this record