|   | 
Details
   web
Records
Author Carlson, E.D.; Anderson, P.R.; Fabbri, A.; Fagnocchi, S.; Hirsch, W.H.; Klyap, S.A.
Title Semiclassical gravity in the far field limit of stars, black holes, and wormholes Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 12 Pages 124070 - 24pp
Keywords
Abstract Semiclassical gravity is investigated in a large class of asymptotically flat, static, spherically symmetric spacetimes including those containing static stars, black holes, and wormholes. Specifically the stress-energy tensors of massless free spin 0 and spin 1/2 fields are computed to leading order in the asymptotic regions of these spacetimes. This is done for spin 0 fields in Schwarzschild spacetime using a WKB approximation. It is done numerically for the spin 1/2 field in Schwarzschild, extreme Reissner-Nordstrom, and various wormhole spacetimes. And it is done by finding analytic solutions to the leading order mode equations in a large class of asymptotically flat static spherically symmetric spacetimes. Agreement is shown between these various computational methods. It is found that, for all of the spacetimes considered, the energy density and pressure in the asymptotic region are proportional to r(-5) to leading order. Furthermore, for the spin 1/2 field and the conformally coupled scalar field, the stress-energy tensor depends only on the leading order geometry in the far field limit. This is also true for the minimally coupled scalar field for spacetimes containing either a static star or a black hole, but not for spacetimes containing a wormhole.
Address [Carlson, Eric D.; Anderson, Paul R.; Hirsch, William H.; Klyap, Sarah A.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: ecarlson@wfu.edu
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286749400008 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 531
Permanent link to this record
 

 
Author Balbinot, R.; Carusotto, I.; Fabbri, A.; Recati, A.
Title Testing Hawking Particle Creation By Black Holes Through Correlation Measurements Type Journal Article
Year 2010 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 19 Issue 14 Pages 2371-2377
Keywords
Abstract Hawking's prediction of thermal radiation by black holes has been shown by Unruh to be expected also in condensed matter systems. We show here that in a black hole-like configuration realized in a BEC this particle-creation does indeed take place and can be unambiguously identified via a characteristic pattern in the density-density correlations. This opens the concrete possibility of the experimental verification of this effect.
Address [Balbinot, R.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: balbinot@bo.infn.it
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes ISI:000286112000022 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 534
Permanent link to this record
 

 
Author Mayoral, C.; Recati, A.; Fabbri, A.; Parentani, R.; Balbinot, R.; Carusotto, I.
Title Acoustic white holes in flowing atomic Bose-Einstein condensates Type Journal Article
Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 13 Issue Pages 025007 - 29pp
Keywords
Abstract We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method, which includes quantum fluctuations. Signatures of the white hole radiation of correlated phonon pairs by the horizon are characterized; analogies and differences with Hawking radiation from acoustic black holes are discussed. In particular, a short wavelength feature is identified in the density correlation function, whose amplitude steadily grows in time since the formation of the horizon. The numerical observations are quantitatively interpreted by means of an analytical Bogoliubov theory of quantum fluctuations for a white hole configuration within the step-like horizon approximation.
Address [Recati, Alessio; Carusotto, Iacopo] Univ Trent, INO CNR BEC Ctr, I-38123 Povo, Italy, Email: carusott@science.unitn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes ISI:000287855400003 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 556
Permanent link to this record
 

 
Author Coutant, A.; Fabbri, A.; Parentani, R.; Balbinot, R.; Anderson, P.R.
Title Hawking radiation of massive modes and undulations Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 6 Pages 064022 - 17pp
Keywords
Abstract We compute the analogue Hawking radiation for modes which possess a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This reflection is accompanied by an extra mode mixing which occurs in the supersonic region, and which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what is found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodynamical regime.
Address [Coutant, Antonin; Parentani, Renaud] Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France, Email: antonin.coutant@th.u-psud.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000308642300005 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 1174
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.; Mayoral, C.
Title Hawking effect in BECs acoustic white holes Type Journal Article
Year 2013 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume 128 Issue 2 Pages 16 - 21pp
Keywords
Abstract Bogoliubov pseudoparticle creation in a BEC undergoing a WH-like flow is investigated analytically in the case of a one-dimensional geometry with stepwise homogeneous regions. Comparison of the results with those corresponding to a BH flow is performed. The implications for the analogous gravitational problem is discussed.
Address [Balbinot, R.; Fabbri, A.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: balbinot@bo.infn.it;
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:000316122600005 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 1378
Permanent link to this record
 

 
Author Anderson, P.R.; Balbinot, R.; Fabbri, A.; Parentani, R.
Title Hawking radiation correlations in Bose-Einstein condensates using quantum field theory in curved space Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 12 Pages 124018 - 18pp
Keywords
Abstract The density-density correlation function is computed for the Bogoliubov pseudoparticles created in a Bose-Einstein condensate undergoing a black hole flow. On the basis of the gravitational analogy, the method used relies only on quantum field theory in curved spacetime techniques. A comparison with the results obtained by ab initio full condensed matter calculations is given, confirming the validity of the approximation used, provided the profile of the flow varies smoothly on scales compared to the condensate healing length.
Address [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000320609200009 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 1488
Permanent link to this record
 

 
Author Babichev, E.; Fabbri, A.
Title Instability of black holes in massive gravity Type Journal Article
Year 2013 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 30 Issue 15 Pages 152001 - 7pp
Keywords
Abstract We show that linear perturbations around the simplest black hole solution of massive bi-gravity theories, the bi-Schwarzschild solution, exhibit an unstable mode featuring the Gregory-Laflamme instability of higher dimensional black strings. The result is obtained for the massive gravity theory which is free from the Boulware-Deser ghost, as well as for its extension with two dynamical metrics. These results may indicate that static black holes in massive gravity do not exist. For the graviton mass of the order of the Hubble scale, however, the instability timescale is of order of the Hubble time.
Address [Babichev, Eugeny] Univ Paris 11, Lab Phys Theor Orsay, F-91405 Orsay, France, Email: eugeny.babichev@th.u-psud.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000321692600001 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 1498
Permanent link to this record
 

 
Author Babichev, E.; Fabbri, A.
Title Stability analysis of black holes in massive gravity: A unified treatment Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 89 Issue 8 Pages 081502 - 5pp
Keywords
Abstract We consider the analytic solutions of massive (bi) gravity which can be written in a simple form using advanced Eddington-Finkelstein coordinates. We analyze the stability of these solutions against radial perturbations. First we recover the previously obtained result on the instability of the bidiagonal bi-Schwarzschild solutions. In the nonbidiagonal case (which contains, in particular, the Schwarzschild solution with Minkowski fiducial metric), we show that generically there are physical spherically symmetric perturbations, but no unstable modes.
Address [Babichev, Eugeny; Fabbri, Alessandro] Univ Paris 11, Lab Phys Theor Orsay, F-91405 Orsay, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000334335000001 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 1770
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.
Title Amplifying the Hawking Signal in BECs Type Journal Article
Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2014 Issue Pages 713574 - 8pp
Keywords
Abstract We consider simple models of Bosep-Einstein condensates to study analog pairp-creation effects, namely, the Hawking effect from acoustic black holes and the dynamical Casimir effect in rapidly timep-dependent backgrounds. We also focus on a proposal by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms' interactions shortly before measurements are made.
Address [Balbinot, Roberto; Fabbri, Alessandro] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: afabbri@ific.uv.es
Corporate Author Thesis
Publisher Hindawi Publishing Corporation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000335740300001 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 1787
Permanent link to this record
 

 
Author Babichev, E.; Fabbri, A.
Title A class of charged black hole solutions in massive (bi)gravity Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 016 - 10pp
Keywords Classical Theories of Gravity; Black Holes
Abstract We present a new class of solutions describing charged black holes in massive (bi)gravity. For a generic choice of the parameters of the massive gravity action, the solution is the Reissner-Nordstrom-de Sitter metric written in the Eddington-Finkelstein coordinates for both metrics. We also study a special case of the parameters, for which the space of solutions contains an extra symmetry.
Address [Babichev, Eugeny] Univ Paris 11, CNRS, LPT, UMR 8627, F-91405 Orsay, France, Email: eugeny.babichev@th.u-psud.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000339110500001 Approved no
Is ISI yes International Collaboration yes
Call Number (down) IFIC @ pastor @ Serial 1847
Permanent link to this record