|   | 
Details
   web
Records
Author (down) Villanueva-Domingo, P.; Mena, O.; Miralda-Escude, J.
Title Maximum amplitude of the high-redshift 21-cm absorption feature Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 8 Pages 083502 - 8pp
Keywords
Abstract We examine the maximum possible strength of the global 21-cm absorption dip on the cosmic background radiation at high-redshift caused by the atomic intergalactic medium, when the Lyman-alpha coupling is maximum, assuming no exotic cooling mechanisms from interactions with dark matter. This maximum absorption is limited by three inevitable factors that need to be accounted for: (a) heating by energy transferred from the cosmic background radiation to the hydrogen atoms via 21-cm transitions, dubbed as 21-cm heating; (b) Ly alpha heating by scatterings of Ly alpha photons from the first stars; (c) the impact of the expected density fluctuations in the intergalactic gas in standard cold dark matter theory, which reduces the mean 21-cm absorption signal. Inclusion of this third novel effect reduces the maximum global 21-cm absorption by similar to 10%. Overall, the three effects studied here reduce the 21-cm global absorption by similar to 20% at z similar or equal to 17.
Address [Villanueva-Domingo, Pablo; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Paterna, Spain, Email: pablo.villanueva@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000523343100006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4360
Permanent link to this record
 

 
Author (down) Villanueva-Domingo, P.; Ichiki, K.
Title 21 cm forest constraints on primordial black holes Type Journal Article
Year 2023 Publication Publications of the Astronomical Society of Japan Abbreviated Journal Publ. Astron. Soc. Jpn.
Volume 75 Issue SP1 Pages S33-S49
Keywords dark matter; radio lines: ISM
Abstract Primordial black holes (PBHs) as part of the dark matter (DM) would modify the evolution of large-scale structures and the thermal history of the universe. Future 21 cm forest observations, sensitive to small scales and the thermal state of the intergalactic medium (IGM), could probe the existence of such PBHs. In this article, we show that the shot noise isocurvature mode on small scales induced by the presence of PBHs can enhance the amount of low-mass halos, or minihalos, and thus, the number of 21 cm absorption lines. However, if the mass of PBHs is as large as M-PBH greater than or similar to 10 M-circle dot, with an abundant enough fraction of PBHs as DM, f(PBH), the IGM heating due to accretion on to the PBHs counteracts the enhancement due to the isocurvature mode, reducing the number of absorption lines instead. The concurrence of both effects imprints distinctive signatures on the number of absorbers, allowing the abundance of PBHs to be bound. We compute the prospects for constraining PBHs with future 21 cm forest observations, finding achievable competitive upper limits on the abundance as low as f(PBH) similar to 10(-3) at M-PBH = 100 M-circle dot, or even lower at larger masses, in regions of the parameter space unexplored by current probes. The impact of astrophysical X-ray sources on the IGM temperature is also studied, which could potentially weaken the bounds.
Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: ichiki@a.phys.nagoya-u.ac.jp
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6264 ISBN Medium
Area Expedition Conference
Notes WOS:000768441900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5168
Permanent link to this record
 

 
Author (down) Villaescusa-Navarro, F. et al; Villanueva-Domingo, P.
Title The CAMELS Multifield Data Set: Learning the Universe's Fundamental Parameters with Artificial Intelligence Type Journal Article
Year 2022 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.
Volume 259 Issue 2 Pages 61 - 14pp
Keywords
Abstract We present the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) Multifield Data set (CMD), a collection of hundreds of thousands of 2D maps and 3D grids containing many different properties of cosmic gas, dark matter, and stars from more than 2000 distinct simulated universes at several cosmic times. The 2D maps and 3D grids represent cosmic regions that span similar to 100 million light-years and have been generated from thousands of state-of-the-art hydrodynamic and gravity-only N-body simulations from the CAMELS project. Designed to train machine-learning models, CMD is the largest data set of its kind containing more than 70 TB of data. In this paper we describe CMD in detail and outline a few of its applications. We focus our attention on one such task, parameter inference, formulating the problems we face as a challenge to the community. We release all data and provide further technical details at https://camels-multifield-dataset.readthedocs.io.
Address [Villaescusa-Navarro, Francisco; Nicola, Andrina; Spergel, David N.; Matilla, Jose Manuel Zorrilla; Shao, Helen] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA, Email: villaescusa.francisco@gmail.com
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0067-0049 ISBN Medium
Area Expedition Conference
Notes WOS:000780035300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5194
Permanent link to this record
 

 
Author (down) Villaescusa-Navarro, F. et al; Villanueva-Domingo, P.
Title The CAMELS Project: Public Data Release Type Journal Article
Year 2023 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.
Volume 265 Issue 2 Pages 54 - 14pp
Keywords Cosmology; Hydrodynamical simulations; Astrostatistics; Galaxy formation
Abstract The Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4233 cosmological simulations, 2049 N-body simulations, and 2184 state-of-the-art hydrodynamic simulations that sample a vast volume in parameter space. In this paper, we present the CAMELS public data release, describing the characteristics of the CAMELS simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogs, power spectra, bispectra, Lya spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also release over 1000 catalogs that contain billions of galaxies from CAMELS-SAM: a large collection of N-body simulations that have been combined with the Santa Cruz semianalytic model. We release all the data, comprising more than 350 terabytes and containing 143,922 snapshots, millions of halos, galaxies, and summary statistics. We provide further technical details on how to access, download, read, and process the data at .
Address [Villaescusa-Navarro, Francisco; Genel, Shy; Angles-Alcazar, Daniel; Hassan, Sultan; Pisani, Alice; Wong, Kaze W. K.; Coulton, William R.; Steinwandel, Ulrich P.; Spergel, David N.; Burkhart, Blakesley; Wandelt, Benjamin; Somerville, Rachel S.; Bryan, Greg L.; Li, Yin] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA, Email: camel.simulations@gmail.com
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0067-0049 ISBN Medium
Area Expedition Conference
Notes WOS:000964876300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5525
Permanent link to this record
 

 
Author (down) Vijande, J.; Tedgren, A.C.; Ballester, F.; Baltas, D.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; De Werd, L.; Perez-Calatayud, J.
Title Source strength determination in iridium-192 and cobalt-60 brachytherapy: A European survey on the level of agreement between clinical measurements and manufacturer certificates Type Journal Article
Year 2021 Publication Physics and Imaging in Radiation Oncology Abbreviated Journal Phys. Imag. Radiat. Oncol.
Volume 19 Issue Pages 108-111
Keywords RAKR; Calibration; HDR; PDR; Brachytherapy
Abstract Background and purpose: Brachytherapy treatment outcomes depend on the accuracy of the delivered dose distribution, which is proportional to the reference air-kerma rate (RAKR). Current societal recommendations require the medical physicist to compare the measured RAKR values to the manufacturer source calibration certificate. The purpose of this work was to report agreement observed in current clinical practice in the European Union. Materials and methods: A European survey was performed for high- and pulsed-dose-rate (HDR and PDR) highenergy sources (Ir-192 and Co-60), to quantify observed RAKR differences. Medical physicists at eighteen hospitals from eight European countries were contacted, providing 1,032 data points from 2001 to 2020. Results: Over the survey period, 77% of the Ir-192 measurements used a well chamber instead of the older Krieger phantom method. Mean differences with the manufacturer calibration certificate were 0.01% +/- 1.15% for Ir-192 and -0.1% +/- 1.3% for Co-60. Over 95% of RAKR measurements in the clinic were within 3% of the manufacturer calibration certificate. Conclusions: This study showed that the agreement level was generally better than that reflected in prior societal recommendations positing 5%. Future recommendations on high-energy HDR and PDR source calibrations in the clinic may consider tightened agreements levels.
Address [Vijande, Javier; Ballester, Facundo] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: Javier.vijande@uv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000694711800017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4969
Permanent link to this record