toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) n_TOF Collaboration (Gunsing, F. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title Nuclear data activities at the n_TOF facility at CERN Type Journal Article
  Year 2016 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 131 Issue 10 Pages 371 - 13pp  
  Keywords  
  Abstract Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR database. The EXFOR database forms an important link between nuclear data measurements and the evaluated data libraries. CERN's neutron time-of-flight facility nTOF has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility nTOF will be presented.  
  Address [Gunsing, F.; Belloni, F.; Berthoumieux, E.; Diakaki, M.; Dupont, E.] CEA Saclay, Irfu, Gif Sur Yvette, France, Email: gunsing@cea.fr  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386722000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2850  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Diakaki, M. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Neutron-induced fission cross section of Np-237 in the keV to MeV range at the CERN n_TOF facility Type Journal Article
  Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 93 Issue 3 Pages 034614 - 12pp  
  Keywords  
  Abstract The neutron-induced fission cross section of Np-237 was experimentally determined at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. A fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.  
  Address [Diakaki, M.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.] CEA Saclay, DSM, F-91191 Gif Sur Yvette, France, Email: maria.diakaki@cea.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372415600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2591  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Cosentino, L. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. url  doi
openurl 
  Title Experimental setup and procedure for the measurement of the Be-7(n,alpha)alpha reaction at n_TOF Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 830 Issue Pages 197-205  
  Keywords Cosmological lithium problem; Big bang nucleosynthesis; Be-7(n,alpha)alpha reaction; n_TOF spallation neutron source  
  Abstract The newly built second experimental area EAR2 of then n_ToF spallation neutron source at CERN allows to perform (n, charged particles) experiments on short-lived highly radioactive targets. This paper describes a detection apparatus and the experimental procedure for the determination of the cross-section of the Be-7(n,alpha)alpha reaction, which represents one of the focal points toward the solution of the cosmological Lithium abundance problem, and whose only measurement, at thermal energy, dates back to 1963. The apparently unsurmountable experimental difficulties stemming from the huge Be-7 gamma-activity, along with the lack of a suitable neutron beam facility, had so far prevented further measurements. The detection system is subject to considerable radiation damage, but is capable of disentangling the rare reaction signals from the very high background. This newly developed setup could likely be useful also to study other challenging reactions requiring the detectors to be installed directly in the neutron beam.  
  Address [Cosentino, L.; Musumarra, A.; Pappalardo, A.; Piscopo, M.; Finocchiaro, P.; Cardella, R.; Heyse, J.; Jenkins, D. G.; Kaeppeler, F.; Katabuchi, T.; Kokkoris, M.; Lederer, C.; Lonsdale, S.; Massimi, C.; Mastinu, P.; Matteucci, F.; Mazzone, A.; Milazzo, P. M.; Nolte, R.; Patronis, N.; Pavlik, A.; Rauscher, T.; Schillebeeckx, P.; Stamatopoulos, A.; Tsinganis, A.; Vannini, G.; Vlastou, R.; Wallner, A.; Woods, P. J.] INFN Lab Nazl Sud, Catania, Italy, Email: FINOCCHIARO@LNS.INFN.IT  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000381530300027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2792  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Barbagallo, M. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. url  doi
openurl 
  Title Be-7(n,alpha)He-4 Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN Type Journal Article
  Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 117 Issue 15 Pages 152701 - 7pp  
  Keywords  
  Abstract The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at nTOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the nTOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been recorded in two Si-Be-7-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 1960s at a nuclear reactor. The energy dependence reported here clearly indicates the inadequacy of the cross section estimates currently used in BBN calculations. Although new measurements at higher neutron energy may still be needed, the n_TOF results hint at a minor role of this reaction in BBN, leaving the long-standing cosmological lithium problem unsolved.  
  Address [Barbagallo, M.; Colonna, N.; Damone, L.; Mastromarco, M.; Mazzone, A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: nicola.colonna@ba.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384479300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2822  
Permanent link to this record
 

 
Author (down) NEXT Collaboration (Martin-Albo, J. et al); Muñoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gomez-Cadenas, J.J.; Alvarez, V.; Carcel, S.; Carrion, J.V.; Cervera-Villanueva, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Novella, P.; Palmeiro, P.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Sensitivity of NEXT-100 to neutrinoless double beta decay Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 159 - 30pp  
  Keywords Dark Matter and Double Beta Decay (experiments); Rare decay  
  Abstract NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0v beta beta) decay of Xe-136. The detector possesses two features of great value for 0v beta beta searches: energy resolution better than 1% FWHM at the Q value of Xe-136 and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 x 10(-4) counts keV(-1) kg(-1) yr(-1). Accordingly, the detector will reach a sensitivity to the 0v beta beta-decay half-life of 2.8 x 10(25) years (90% CL) for an exposure of 100 kg.year, or 6.0 x 10(25) years after a run of 3 effective years.  
  Address [Martin-Albo, J.; Munoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Carrion, J. V.; Cervera, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: justo.martin-albo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000391745200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2928  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva