|   | 
Details
   web
Records
Author (down) Romanets, O.; Tolos, L.; Garcia-Recio, C.; Nieves, J.; Salcedo, L.L.; Timmermans, R.
Title Heavy-quark spin symmetry for charmed and strange baryon resonances Type Journal Article
Year 2013 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 914 Issue Pages 488-493
Keywords Charm; Heavy-quark spin symmetry; Dynamically generated baryon resonances
Abstract We study charmed and strange odd-parity baryon resonances that are generated dynamically by a unitary baryon-meson coupled-channels model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-Tomozawa chiral Lagrangian to SU(8) spin-flavor symmetry plus a suitable symmetry breaking. The model generates resonances with negative parity from the s-wave interaction of pseudoscalar and vector mesons with 1/2(+) and 3/2(+) baryons in all the isospin, spin, and strange sectors with one, two, and three charm units. Some of our results can be identified with experimental data from several facilities, such as the CLEO, Belle, or BaBar Collaborations, as well as with other theoretical models, whereas others do not have a straightforward identification and require the compilation of more data and also a refinement of the model. (c) 2013 Elsevier B.V. All rights reserved.
Address [Romanets, Olena; Timmermans, Rob] Univ Groningen, Theory Grp, KVI, NL-9747 AA Groningen, Netherlands, Email: o.romanets@rug.nl
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000324847700069 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1601
Permanent link to this record
 

 
Author (down) Resta-Lopez, J.
Title Nonlinear protection of beam delivery systems for multi-TeV linear colliders Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P11010 - 19pp
Keywords Beam Optics; Beam dynamics; Accelerator Subsystems and Technologies; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics)
Abstract The post-linac energy collimation system of future e(+)e(-) multi-TeV linear colliders is designed to fulfil an essential function of protection of the Beam Delivery System (BDS) against miss-steered or errant beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This condition makes the design of the energy collimation system especially challenging, if we take into account the need to dispose of an unprecedented transverse beam energy density per beam of the order of GJ/mm(2), when assuming the nominal CLIC beam parameters at 3 TeV centre-of-mass energy, which translates into an extremely high damage potential of uncontrolled beams. This leads to research activities involving new collimator materials and novel collimation techniques. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a multipole magnet pair for energy collimation. In order to preserve an acceptable luminosity performance, we carefully study the general conditions for self-cancellation of optical aberrations between two multipoles. This nonlinear optics scheme is adapted to the requirements of the post-linac energy collimation system for the CLIC BDS, and its performance is investigated by means of beam tracking simulations. Although applied to the CLIC case, this nonlinear protection system could be adapted to other future colliders.
Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Valencia 46071, Spain, Email: resta@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000329193500035 Approved no
Is ISI yes International Collaboration
Call Number IFIC @ pastor @ Serial 1697
Permanent link to this record
 

 
Author (down) Renner, J.; Cervera-Villanueva, A.; Hernando, J.A.; Izmaylov, A.; Monrabal, F.; Muñoz, J.; Nygren, D.; Gomez-Cadenas, J.J.
Title Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P12020 - 19pp
Keywords Pattern recognition, cluster finding, calibration and fitting methods; Double-beta decay detectors; Time projection chambers; Particle tracking detectors (Gaseous detectors)
Abstract We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0 nu beta beta) decay experiments using a high-pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electron tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0 nu beta beta decay of Xe-136) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0 nu beta beta decay (Q(beta beta)). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign of the curvature can be determined at several points along these tracks, and such information can be used to separate signal (0 nu beta beta) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (about 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0 nu beta beta experiments, aiming to fully explore the inverse hierarchy of neutrino masses.
Address [Renner, J.; Imzaylov, A.; Monrabal, F.; Munoz, J.; Gomez-Cadenas, J. J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: jrenner@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000369998500053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2549
Permanent link to this record
 

 
Author (down) Renner, J. et al; Romo-Luque, C.; Carrion, J.V.; Diaz, J.; Martinez, A.; Querol, M.; Rodriguez-Ponce, J.; Teruel-Pardo, S.
Title Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 17 Issue 5 Pages P05044 - 17pp
Keywords Cryogenic detectors; Gamma camera; SPECT; PET PET; CT; coronary CT angiography (CTA); Liquid detectors
Abstract New detector approaches in Positron Emission Tomography imaging will play an important role in reducing costs, lowering administered radiation doses, and improving overall performance. PETALO employs liquid xenon as the active scintillating medium and UV-sensitive silicon photomultipliers for scintillation readout. The scintillation time in liquid xenon is fast enough to register time-of-flight information for each detected coincidence, and sufficient scintillation is produced with low enough fluctuations to obtain good energy resolution. The present simulation study examines a full-body-sized PETALO detector and evaluates its potential performance in PET image reconstruction.
Address [Romo-Luque, C.; Carrion, J. V.; Diaz, J.; Martinez, A.; Querol, M.; Rodriguez-Ponce, J.; Teruel-Pardo, S.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: paola.ferrario@dipc.org
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000811102400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5264
Permanent link to this record
 

 
Author (down) Reid, B.A.; Verde, L.; Jimenez, R.; Mena, O.
Title Robust neutrino constraints by combining low redshift observations with the CMB Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 003 - 21pp
Keywords cluster counts; cosmological parameters from LSS; neutrino masses from cosmology; cosmological parameters from CMBR
Abstract We illustrate how recently improved low-redshift cosmological measurements can tighten constraints on neutrino properties. In particular we examine the impact of the assumed cosmological model on the constraints. We first consider the new HST H-0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the sigma(8)(Omega(m)/0.25)(0.41) = 0.832 +/- 0.033 constraint from Rozo et al. (2009) derived from the SDSS maxBCG Cluster Catalog. In a ACDM model and when combined with WMAP5 constraints, these low-redshift measurements constrain Sigma m(v) < 0.4 eV at the 95% confidence level. This bound does not relax when allowing for the running of the spectral index or for primordial tensor perturbations. When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of Sigma m(v) < 0.3eV. We test the sensitivity of the neutrino mass constraint to the assumed expansion history by both allowing a dark energy equation of state parameter w not equal -1 and by studying a model with coupling between dark energy and dark matter, which allows for variation in w, Omega(k), and dark coupling strength xi. When combining CMB, H-0 and the SDSS LRG halo power spectrum from Reid et al. 2009, we find that in this very general model, Sigma m(v) < 0.51 eV with 95% confidence. If we allow the number of relativistic species N-rel to vary in a ACDM model with Sigma m(v) = 0, we find N-rel = 3.76(-0.68)(+0.63)(+1.38 -1.21) for the 68% and 95% confidence intervals. We also report prior-independent constraints, which are in excellent agreement with the Bayesian constraints.
Address [Reid, Beth A.] Univ Barcelona, Inst Sci Cosmos ICC, E-08028 Barcelona, Spain, Email: beth.ann.reid@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000273314600008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 511
Permanent link to this record