toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) de Salas, P.F.; Gariazzo, S.; Martinez-Mirave, P.; Pastor, S.; Tortola, M. url  doi
openurl 
  Title Cosmological radiation density with non-standard neutrino-electron interactions Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 820 Issue Pages 136508 - 9pp  
  Keywords Neutrino interactions; Non-standard neutrino interactions; Cosmology; Neutrino oscillations  
  Abstract Neutrino non-standard interactions (NSI) with electrons are known to alter the picture of neutrino de coupling from the cosmic plasma. NSI modify both flavour oscillations through matter effects, and the annihilation and scattering between neutrinos and electrons and positrons in the thermal plasma. In view of the forthcoming cosmological observations, we perform a precision study of the impact of non universal and flavour-changing NSI on the effective number of neutrinos, Neff. We present the variation of Neff arising from the different NSI parameters and discuss the existing degeneracies among them, from cosmology alone and in relation to the current bounds from terrestrial experiments. Even though cosmology is generally less sensitive to NSI than these experiments, we find that future cosmological data would provide competitive and complementary constraints for some of the couplings and their combinations.  
  Address [de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000713101800031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5023  
Permanent link to this record
 

 
Author (down) de Salas, P.F.; Gariazzo, S.; Lesgourgues, J.; Pastor, S. url  doi
openurl 
  Title Calculation of the local density of relic neutrinos Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 034 - 24pp  
  Keywords cosmological neutrinos; dark matter simulations; galaxy clustering; neutrino experiments  
  Abstract Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV. We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the N – one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detecting the cosmic neutrino background, such as the Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY) proposal. We calculate the impact of neutrino clustering in the Milky Way on the expected event rate for a PTOLEMY-like experiment. We find that the effect of clustering remains negligible for the minimal normal hierarchy scenario, while it enhances the event rate by 10 to 20% (resp. a factor 1.7 to 2.5) for the minimal inverted hierarchy scenario (resp. a degenerate scenario with 150 meV masses). Finally we compute the impact on the event rate of a possible fourth sterile neutrino with a mass of 1.3 eV.  
  Address [de Salas, P. F.; Gariazzo, S.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411617000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3308  
Permanent link to this record
 

 
Author (down) de Salas, P.F.; Gariazzo, S.; Laveder, M.; Pastor, S.; Pisanti, O.; Truong, N. url  doi
openurl 
  Title Cosmological bounds on neutrino statistics Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 050 - 18pp  
  Keywords cosmological neutrinos; neutrino properties; big bang nucleosynthesis; cosmological parameters from CMBR  
  Abstract We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than 2 sigma.  
  Address [de Salas, P. F.; Gariazzo, S.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428984100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3551  
Permanent link to this record
 

 
Author (down) Consiglio, R.; de Salas, P.F.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O. url  doi
openurl 
  Title PArthENoPE reloaded Type Journal Article
  Year 2018 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 233 Issue Pages 237-242  
  Keywords Primordial nucleosynthesis; Cosmology; Neutrino physics  
  Abstract We describe the main features of a new and updated version of the program PArthENoPE, which computes the abundances of light elements produced during Big Bang Nucleosynthesis. As the previous first release in 2008, the new one, PArthENoPE2.0, is publicly available and distributed from the code site, http://parthenope.na.infn.it . Apart from minor changes, which will be also detailed, the main improvements are as follows. The powerful, but not freely accessible, NAG routines have been substituted by ODEPACK libraries, without any significant loss in precision. Moreover, we have developed a Graphical User Interface (GUI) which allows a friendly use of the code and a simpler implementation of running for grids of input parameters. New Version program summary Program Title: PArthENoPE2.0 Program Files doi : http://dx.doi.org/10.17632/wvgr7d8yt9.1 Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Supplementary material: User Manual available on the web page http://parthenope.na.infn.it Journal reference of previous version: Comput. Phys. Commun. 178 (2008) 956 971 Does the new version supersede the previous version?: Yes Reasons for the new version: Make the code more versatile and user friendly Summary of revisions: (1) Publicly available libraries (2) GUI for configuration Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems  
  Address [Consiglio, R.; Miele, G.; Pisanti, O.] Univ Napoli Federico II, Dipartimento Fis E Pancini, Via Cintia, I-80126 Naples, Italy, Email: pisanti@na.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444667100020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3729  
Permanent link to this record
 

 
Author (down) Castorina, E.; Franca, U.; Lattanzi, M.; Lesgourgues, J.; Mangano, G.; Melchiorri, A.; Pastor, S. url  doi
openurl 
  Title Cosmological lepton asymmetry with a nonzero mixing angle theta(13) Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 2 Pages 023517 - 11pp  
  Keywords  
  Abstract While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle theta(13), and show that for large theta(13) the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from big bang nucleosynthesis, while the limits on the total neutrino mass from cosmological data are essentially independent of theta(13). Finally, we perform a forecast for Cosmic Origins Explorer, taken as an example of a future cosmic microwave background experiment, and find that it could improve the limits on the total lepton asymmetry approximately by up to a factor 6.6.  
  Address [Castorina, Emanuele] SISSA, I-34136 Trieste, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000306320000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1093  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva