toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Moretti, F.; Bombacigno, F.; Montani, G. url  doi
openurl 
  Title Gravitational Landau damping for massive scalar modes Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 12 Pages 1203 - 9pp  
  Keywords  
  Abstract We establish the possibility of Landau damping for gravitational scalar waves which propagate in a non-collisional gas of particles. In particular, under the hypothesis of homogeneity and isotropy, we describe the medium at the equilibrium with a Juttner-Maxwell distribution, and we analytically determine the damping rate from the Vlasov equation. We find that damping occurs only if the phase velocity of the wave is subluminal throughout the propagation within the medium. Finally, we investigate relativistic media in cosmological settings by adopting numerical techniques.  
  Address [Moretti, Fabio; Montani, Giovanni] Sapienza Univ Rome, Phys Dept, Ple Aldo Moro 5, I-00185 Rome, Italy, Email: fabio.moretti@uniroma1.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000615196900004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4707  
Permanent link to this record
 

 
Author (down) Mongillo, M.; Abdullahi, A.; Banto Oberhauser, B.; Crivelli, P.; Hostert, M.; Massaro, D.; Molina Bueno, L.; Pascoli, S. url  doi
openurl 
  Title Constraining light thermal inelastic dark matter with NA64 Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 5 Pages 391 - 14pp  
  Keywords  
  Abstract A vector portal between the Standard Model and the dark sector is a predictive and compelling framework for thermal dark matter. Through co-annihilations, models of inelastic dark matter (iDM) and inelastic Dirac dark matter (i2DM) can reproduce the observed relic density in the MeV to GeV mass range without violating cosmological limits. In these scenarios, the vector mediator behaves like a semi-visible particle, evading traditional bounds on visible or invisible resonances, and uncovering new parameter space to explain the muon (g – 2) anomaly. By means of a more inclusive signal definition at the NA64 experiment, we place new constraints on iDM and i2DM using a missing energy technique. With a recast-based analysis, we contextualize the NA64 exclusion limits in parameter space and estimate the reach of the newly collected and expected future NA64 data. Our results motivate the development of an optimized search program for semi-visible particles, in which fixed target experiments like NA64 provide a powerful probe in the sub-GeV mass range.  
  Address [Mongillo, Martina; Oberhauser, Benjamin Banto; Crivelli, Paolo] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, CH-8093 Zurich, Switzerland, Email: mmongillo@phys.ethz.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000986592700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5548  
Permanent link to this record
 

 
Author (down) Molina, R.; Oset, E. url  doi
openurl 
  Title Triangle singularity in B- ->K- X(3872); X ->pi 0 pi+ pi- and the X(3872) mass Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 5 Pages 451 - 9pp  
  Keywords  
  Abstract We evaluate the contribution to the X(3872) width from a triangle mechanism in which the X decays into D0D<overbar></mml:mover>0-cc, then the D0(D<overbar></mml:mover>0) decays into D0 pi 0 (D<overbar></mml:mover>0 pi 0) and the D0D<overbar></mml:mover>0 fuse to produce pi+pi-. This mechanism produces an asymmetric peak from a triangle singularity in the pi+pi- invariant mass with a shape very sensitive to the X mass. We evaluate the branching ratios for a reaction where this effect can be seen in the B--> K-pi 0 pi+pi- reaction and show that the determination of the peak in the invariant mass distribution of pi <mml:mo>+pi <mml:mo>- is all that is needed to determine the X mass. Given the present uncertainties in the X mass, which do not allow to know whether the D<mml:mo>0<mml:mover accent=“true”>D<mml:mo stretchy=“false”><overbar></mml:mover>0 state is bound or not, measurements like the one suggested here should be most welcome to clarify this issue.  
  Address [Molina, Raquel] Univ Complutense Madrid, Dept Fis Teor, Fac Fis, Plaza Ciencias 1, Madrid 28040, Spain, Email: raqumoli@ucm.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000546996400004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4461  
Permanent link to this record
 

 
Author (down) Molina, R.; Liu, Z.W.; Geng, L.S.; Oset, E. url  doi
openurl 
  Title Correlation function for the a0(980) Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 3 Pages 328 - 8pp  
  Keywords  
  Abstract We have conducted a model independent analysis of the (K+K0) pair correlation function obtained from ultra high energy pp collisions, with the aim of extracting the information encoded in it related to the KK interaction and the coupled channel pi(+)eta. With the present large errors at small relative (K+K0) momenta, we find that the information obtained about the scattering matrix suffers from large uncertainties. Even then, we are able to show that the data imply the existence of the a(0) resonance, a(0)(980), showing as a strong cusp close to the KK threshold. We also mention that the measurement of the pi(+)eta correlation function will be essential in order to constrain more the information on KK dynamics that can be obtained from correlation functions.  
  Address [Molina, R.; Oset, E.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Parc Cient UV, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: Raquel.Molina@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001195507100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6030  
Permanent link to this record
 

 
Author (down) Molina, R.; Doring, M.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title The pi f(0)(500) decay of the a(1)(1260) Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 9 Pages 782 - 9pp  
  Keywords  
  Abstract We evaluate the a(1)(1260) -> pi sigma(f(0)(500)) decay width from the perspective that the a(1)(1260) resonance is dynamically generated from the pseudoscalar-vector interaction and the sigma arises from the pseudoscalar-pseudoscalar interaction. A triangle mechanism with a(1)(1260) -> p pi followed by rho -> pi pi and a fusion of two pions within the loop to produce the sigma provides the mechanism for this decay under these assumptions for the nature of the two resonances. We obtain widths of the order of 13-22 MeV. Present experimental results differ substantially from each other, suggesting that extra efforts should be devoted to the precise extraction of this important partial decay width, which should provide valuable information on the nature of the axial vector and scalar meson resonances and help clarify the role of the ps channel in recent lattice QCD calculations of the a(1).  
  Address [Molina, R.; Oset, E.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC,Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: Raquel.Molina@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000694246400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4961  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva