|   | 
Details
   web
Records
Author (down) Rafi Alam, M.; Ruiz Simo, I.; Sajjad Athar, M.; Vicente Vacas, M.J.
Title Charged lepton induced one kaon production off the nucleon Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 5 Pages 053008 - 7pp
Keywords
Abstract We study single kaon production off the nucleon induced by electrons (positrons) i.e., e(-) (e(+)) + N -> v(e) ((v) over bar (e)) + (K) over bar (K) + N' at low energies. The possibility of observing these processes with the high luminosity beams available at TJNAF and Mainz is discussed, taking into account that the strangeness conserving electromagnetic reactions have a higher energy threshold for (K) over bar (K) production. The calculations are done using a microscopic model that starts from the SU(3) chiral Lagrangians and includes background terms and the resonant mechanisms associated to the lowest lying resonance Sigma*(1385)
Address [Alam, M. Rafi; Athar, M. Sajjad] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000316387200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1381
Permanent link to this record
 

 
Author (down) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Constraints on the origin of cosmic rays above 10^18 eV from large-scale anisotropy searches in data of the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 762 Issue 1 Pages L13 - 8pp
Keywords astroparticle physics; cosmic rays
Abstract A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10(18) eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, Lisbon, Portugal
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000312488400013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1279
Permanent link to this record
 

 
Author (down) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 026 - 20pp
Keywords ultra high energy cosmic rays; cosmic ray experiments
Abstract To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.
Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Santo, C. E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000315576400026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1360
Permanent link to this record
 

 
Author (down) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Ultrahigh Energy Neutrinos at the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2013 Issue Pages 708680 - 18pp
Keywords
Abstract The observation of ultrahigh energy neutrinos (UHE nu s) has become a priority in experimental astroparticle physics. UHE nu s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going nu) or in the Earth crust (Earth-skimming nu), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE nu s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE nu s in the EeV range and above.
Address Univ Tecn Lisboa, LIP, Lisbon, Portugal
Corporate Author Thesis
Publisher Hindawi Publishing Corporation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000317204500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1398
Permanent link to this record
 

 
Author (down) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P04009 - 28pp
Keywords Data analysis; Large detector systems for particle and astroparticle physics; Detector alignment and calibration methods (lasers, sources, particle-beams)
Abstract The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.
Address Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000317462400016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1413
Permanent link to this record