|   | 
Details
   web
Records
Author (down) Lattanzi, M.; Riemer-Sorensen, S.; Tortola, M.; Valle, J.W.F.
Title Updated CMB and x- and gamma-ray constraints on Majoron dark matter Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue 6 Pages 063528 - 8pp
Keywords
Abstract The Majoron provides an attractive dark matter candidate, directly associated with the mechanism responsible for spontaneous neutrino mass generation within the standard model SU(3)(c) circle times SU(2)(L) circle times U(1)(Y) framework. Here we update the cosmological and astrophysical constraints on Majoron dark matter coming from the cosmic microwave background and a variety of x- and gamma-ray observations.
Address [Lattanzi, Massimiliano] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy, Email: lattanzi@fe.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000324760500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1595
Permanent link to this record
 

 
Author (down) Lattanzi, M.; Gerbino, M.; Freese, K.; Kane, G.; Valle, J.W.F.
Title Cornering (quasi) degenerate neutrinos with cosmology Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 213 - 24pp
Keywords Cosmology of Theories beyond the SM; Neutrino Physics
Abstract In light of the improved sensitivities of cosmological observations, we examine the status of quasi-degenerate neutrino mass scenarios. Within the simplest extension of the standard cosmological model with massive neutrinos, we find that quasi-degenerate neutrinos are severely constrained by present cosmological data and neutrino oscillation experiments. We find that Planck 2018 observations of cosmic microwave background (CMB) anisotropies disfavour quasi-degenerate neutrino masses at 2.4 Gaussian sigma 's, while adding baryon acoustic oscillations (BAO) data brings the rejection to 5.9 sigma 's. The highest statistical significance with which one would be able to rule out quasi-degeneracy would arise if the sum of neutrino masses is Sigma m(v) = 60 meV (the minimum allowed by neutrino oscillation experiments); indeed a sensitivity of 15 meV, as expected from a combination of future cosmological probes, would further improve the rejection level up to 17 sigma. We discuss the robustness of these projections with respect to assumptions on the underlying cosmological model, and also compare them with bounds from beta decay endpoint and neutrinoless double beta decay studies.
Address [Lattanzi, Massimiliano; Gerbino, Martina] Ist Nazl Fis Nucl, Sez Ferrara, Polo Sci & Tecnol,Edificio C,Via Saragat 1, I-44122 Ferrara, Italy, Email: lattanzi@fe.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000588150500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4603
Permanent link to this record
 

 
Author (down) Kuo, J.L.; Lattanzi, M.; Cheung, K.; Valle, J.W.F.
Title Decaying warm dark matter and structure formation Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages 026 - 24pp
Keywords cosmological simulations; dark matter simulations
Abstract We examine the cosmology of warm dark matter (WDM), both stable and decaying, from the point of view of structure formation. We compare the matter power spectrum associated to WDM masses of 1.5 keV and 0.158 keV, with that expected for the stable cold dark matter ACDM Xi SCDM paradigm, taken as our reference model. We scrutinize the effects associated to the warm nature of dark matter, as well as the fact that it decays. The decaying warm dark matter (DWDM) scenario is well-motivated, emerging in a broad class of particle physics theories where neutrino masses arise from the spontaneous breaking of a continuous global lepton number symmetry. The majoron arises as a Nambu-Goldstone boson, and picks up a mass from gravitational effects, that explicitly violate global symmetries. The majoron necessarily decays to neutrinos, with an amplitude proportional to their tiny mass, which typically gives it cosmologically long lifetimes. Using N-body simulations we show that our DWDM picture leads to a viable alternative to the ACDM scenario, with predictions that can differ substantially on small scales.
Address [Kuo, Jui-Lin; Cheung, Kingman] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan, Email: juilinkuo@gapp.nthu.edu.tw;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000453858100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3851
Permanent link to this record
 

 
Author (down) Kosmas, T.S.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F.
Title Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 6 Pages 063013 - 12pp
Keywords
Abstract We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated chi(2)-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.
Address [Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Theoret Phys Sect, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000411582400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3304
Permanent link to this record
 

 
Author (down) Kosmas, T.S.; Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F.
Title Probing neutrino magnetic moments at the Spallation Neutron Source facility Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 1 Pages 013011 - 12pp
Keywords
Abstract Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrinonucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of chi(2) analysis employing realistic nuclear structure calculations in the context of the quasiparticle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for standard model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge radius. We illustrate our results for various choices of experimental setup and target material.
Address [Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Theoret Phys Sect, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000358256700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2311
Permanent link to this record