|   | 
Details
   web
Records
Author (down) Palomares-Ruiz, S.; Vincent, A.C.; Mena, O.
Title Spectral analysis of the high-energy IceCube neutrinos Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 10 Pages 103008 - 28pp
Keywords
Abstract A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the similar to 30 TeV-3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, (1: 1: 1)(circle plus), with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spectrum by allowing a larger muon neutrino component, since above this energy most atmospheric tracklike events are effectively removed. Extending the high-energy cutoff to fully cover the Glashow resonance region leads to a softer spectrum and a preference for tau neutrino dominance, as none of the expected electron (anti) neutrino induced showers have been observed so far. The lack of showers at energies above 2 PeV may point to a broken power-law neutrino spectrum. Future data may confirm or falsify whether the recently discovered high-energy neutrino fluxes and the long-standing detected cosmic rays have a common origin.
Address [Palomares-Ruiz, Sergio; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000355173100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2242
Permanent link to this record
 

 
Author (down) Pallis, C.; Shafi, Q.
Title Gravity waves from non-minimal quadratic inflation Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 023 - 31pp
Keywords inflation; supersymmetry and cosmology; cosmology of theories beyond the SM
Abstract We discuss non-minimal quadratic inflation in supersymmetric (SUSY) and non-SUSY models which entails a linear coupling of the inflaton to gravity. Imposing a lower bound on the parameter c(R), involved in the coupling between the inflaton and the Ricci scalar curvature, inflation can be attained even for subplanckian values of the inflaton while the corresponding effective theory respects the perturbative unitarity up to the Planck scale. Working in the non-SUSY context we also consider radiative corrections to the inflationary potential due to a possible coupling of the inflaton to bosons or fermions. We find ranges of the parameters, depending mildly on the renormalization scale, with adjustable values of the spectral index n(s), tensor-to-scalar ratio r similar or equal to (2 – 4) . 10(-3), and an inflaton mass close to 3 . 10 (13) GeV. In the SUSY framework we employ two gauge singlet chiral superfields, a logarithmic Kahler potential including all the allowed terms up to fourth order in powers of the various fields, and determine uniquely the superpotential by applying a continuous R and a global U(1) symmetry. When the Kahler manifold exhibits a no-scale-type symmetry, the model predicts n(s) similar or equal to 0.963 and r similar or equal to 0.004. Beyond no-scale SUGRA, n(s) and r depend crucially on the coefficient involved in the fourth order term, which mixes the inflaton with the accompanying non-inflaton field in the Kahler potential, and the prefactor encountered in it. Increasing slightly the latter above (-3), an efficient enhancement of the resulting r can be achieved putting it in the observable range. The inflaton mass in the last case is confined in the range (5 – 9) . 10(13) GeV.
Address [Pallis, Constantinos] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: cpallis@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000355633800023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2263
Permanent link to this record
 

 
Author (down) Pallis, C.
Title Kinetically modified nonminimal chaotic inflation Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 12 Pages 123508 - 6pp
Keywords
Abstract We consider supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the phi(n) potential with 2 <= n <= 6. We show that the coexistence of a nonminimal coupling to gravity f(R) = 1 + c(R)phi(n/2) with a kinetic mixing of the form f(K) = c(K)f(R)(m) can accommodate inflationary observables favored by the BICEP2/Keck Array and Planck results for 0 <= m <= 4 and 2.5 x 10(-4) <= r(RK) = c(R)/c(K)(n/4) <= 1, where the upper limit is not imposed for n 2. Inflation can be attained for sub-Planckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.
Address [Pallis, Constantinos] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000355724600002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2249
Permanent link to this record
 

 
Author (down) Pajtler, M.V.; Szilner, S.; Corradi, L.; de Angelis, G.; Fioretto, E.; Gadea, A.; Haas, F.; Lunardi, S.; Malenica, D.J.; Marginean, N.; Mengoni, D.; Mijatovic, T.; Montagnoli, G.; Montanari, D.; Pollarolo, G.; Recchia, F.; Salsac, M.D.; Scarlassara, F.; Soic, N.; Stefanini, A.M.; Ur, C.A.; Valiente-Dobon, J.J.
Title Selective properties of neutron transfer reactions in the Zr-90+Pb-208 system for the population of excited states in zirconium isotopes Type Journal Article
Year 2015 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 941 Issue Pages 273-292
Keywords Heavy ion transfer reactions; gamma transitions; Magnetic spectrometer
Abstract Nuclei produced via multineutron transfer channels have been studied in Zr-90 + Pb-208 close to the Coulomb barrier energy in a fragment-gamma coincident measurement employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. The selective properties of the reaction mechanism have been discussed in terms of states and their strength excited in the neutron transfer channels leading to Zr89-94 isotopes. A strong population of yrast states, with energies up to similar to 7.5 MeV has been observed.
Address [Pajtler, M. Varga] Univ Osijek, Dept Phys, HR-31000 Osijek, Croatia, Email: mvarga@fizika.unios.hr;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000360515100020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2377
Permanent link to this record
 

 
Author (down) Ortega, P.G.; Torres-Espallardo, I.; Cerutti, F.; Ferrari, A.; Gillam, J.E.; Lacasta, C.; Llosa, G.; Oliver, J.F.; Sala, P.R.; Solevi, P.; Rafecas, M.
Title Noise evaluation of Compton camera imaging for proton therapy Type Journal Article
Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 60 Issue 5 Pages 1845-1863
Keywords proton therapy; Compton camera; Monte Carlo methods; FLUKA; prompt gamma; range verification; MLEM
Abstract Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming. energy is considered as a variable in the reconstruction inverse problem. Jointly with prompt gamma, secondary neutrons and scattered photons, not strongly correlated with the dose map, can also reach the imaging detector and produce false events. These events deteriorate the image quality. Also, high intensity beams can produce particle accumulation in the camera, which lead to an increase of random coincidences, meaning events which gather measurements from different incoming particles. The noise scenario is expected to be different if double or triple events are used, and consequently, the reconstructed images can be affected differently by spurious data. The aim of the present work is to study the effect of false events in the reconstructed image, evaluating their impact in the determination of the beam particle ranges. A simulation study that includes misidentified events (neutrons and random coincidences) in the final image of a Compton Telescope for PT monitoring is presented. The complete chain of detection, from the beam particle entering a phantom to the event classification, is simulated using FLUKA. The range determination is later estimated from the reconstructed image obtained from a two and three-event algorithm based on Maximum Likelihood Expectation Maximization. The neutron background and random coincidences due to a therapeutic-like time structure are analyzed for mono-energetic proton beams. The time structure of the beam is included in the simulations, which will affect the rate of particles entering the detector.
Address [Ortega, P. G.; Cerutti, F.; Ferrari, A.] CERN European Org Nucl Res, CH-1217 Meyrin, Switzerland, Email: pgarciao@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000349530700009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2115
Permanent link to this record