Penalva, N., Hernandez, E., & Nieves, J. (2020). (B)over-bar(c) ->eta(c),(B)over-bar(c) -> J/psi and (B)over-bar -> D-(*()) semileptonic decays including new physics. Phys. Rev. D, 102(9), 096016–27pp.
Abstract: We apply the general formalism derived by Penalva et al. [Phys. Rev. D 101, 113004 (2020)] to the semileptonic decay of pseudoscalar mesons containing a b quark. While present (B) over bar -> D-(*()) data give the strongest evidence in favor of lepton flavor universality violation, the observables that are normally considered are not able to distinguish between different new physics (NP) scenarios. In the above reference we discussed the relevant role that the various contributions to the double differential decay widths d(2)Gamma (d omega d cos theta(l)) and d(2)Gamma (d omega dE(l)) could play to this end. Here omega is the product of the two hadron fourvelocities, theta(l) is the angle made by the final lepton and final hadron three-momenta in the center of mass of the final two-lepton system, and E-l is the final charged lepton energy in the laboratory system. The formalism was applied by Penalva et al. to the analysis of the Lambda(b) -> Lambda(c) semileptonic decay, showing the new observables were able to tell apart different NP scenarios. Here we analyze the (B) over barc -> eta(c)tau(nu) over bar (tau), (B) over barc -> J/psi tau(nu) over bar (tau), (B) over bar -> D tau(nu) over bar (tau) and (B) over bar -> D*tau(nu) over bar (tau) , semileptonic decays. We find that, as a general rule, the (B) over barc -> J/psi observables, even including (tau) polarization, are less optimal for distinguishing between NP scenarios than those obtained from (B) over barc -> eta(c) decays, or those presented by Penalva et al. for the related Lambda(b) -> Lambda(c) semileptonic decay. Finally, we show that (B) over bar -> D and (B) over barc -> eta(c) , and (B) over bar -> D* and (B) over barc -> J/psi decay observables exhibit similar behaviors.
|
Penalva, N., Hernandez, E., & Nieves, J. (2021). New physics and the tau polarization vector in b -> c tau barnutau decays. J. High Energy Phys., 06(6), 118–37pp.
Abstract: For a general H-b -> Hc tau nu <overbar></mml:mover>tau decay we analyze the role of the tau polarization vector P μin the context of lepton flavor universality violation studies. We use a general phenomenological approach that includes, in addition to the Standard Model (SM) contribution, vector, axial, scalar, pseudoscalar and tensor new physics (NP) terms which strength is governed by, complex in general, Wilson coefficients. We show that both in the laboratory frame, where the initial hadron is at rest, and in the center of mass of the two final leptons, a P -></mml:mover> component perpendicular to the plane defined by the three-momenta of the final hadron and the tau lepton is only possible for complex Wilson coefficients, being a clear signal for physics beyond the SM as well as time reversal (or CP-symmetry) violation. We make specific evaluations of the different polarization vector components for the Lambda (b) -> Lambda (c), <mml:mover accent=“true”>B<mml:mo stretchy=“true”><overbar></mml:mover>c -> eta (c), J/psi and <mml:mover accent=“true”>B<mml:mo stretchy=“true”><overbar></mml:mover> -> D-(*) semileptonic decays, and describe NP effects in the complete two-dimensional space associated with the independent kinematic variables on which the polarization vector depends. We find that the detailed study of P μhas great potential to discriminate between different NP scenarios for 0(-) -> 0(-) decays, but also for Lambda (b) -> Lambda (c) transitions. For this latter reaction, we pay special attention to corrections to the SM predictions derived from complex Wilson coefficients contributions.
|
Penalva, N., Hernandez, E., & Nieves, J. (2021). The role of right-handed neutrinos in b -> c tau (pi nu(tau), rho nu(tau), mu(nu)over-bar(mu)nu(tau))(nu)over-bar(tau) from visible final-state kinematics. J. High Energy Phys., 10(10), 122–45pp.
Abstract: In the context of lepton flavor universality violation (LFUV) studies, we fully derive a general tensor formalism to investigate the role that left- and right-handed neutrino new-physics (NP) terms may have in b -> c tau(nu) over bar (tau) transitions. We present, for several extensions of the Standard Model (SM), numerical results for the Lambda(b) -> Lambda(c)tau(nu) over bar (tau) semileptonic decay, which is expected to be measured with precision at the LHCb. This reaction can be a new source of experimental information that can help to confirm, or maybe rule out, LFUV presently seen in (B) over bar meson decays. The present study analyzes observables that can help in distinguishing between different NP scenarios that otherwise provide very similar results for the branching ratios, which are our currently best hints for LFUV. Since the tau lepton is very short-lived, we consider three subsequent tau-decay modes, two hadronic pi nu(tau) and rho nu(tau) and one leptonic mu(nu) over bar (mu)nu(tau), which have been previously studied for (B) over bar -> D(*) decays. Within the tensor formalism that we have developed in previous works, we re-obtain the expressions for the differential decay width written in terms of visible (experimentally accessible) variables of the massive particle created in the tau decay. There are seven different tau angular and spin asymmetries that are defined in this way and that can be extracted from experiment. Those asymmetries provide observables that can help in constraining possible SM extensions.
|
Penalva, N., Hernandez, E., & Nieves, J. (2022). Visible energy and angular distributions of the charged particle from the tau-decay in b -> C tau (mu(nu)over-bar(mu)nu(tau), pi nu(tau), rho nu(tau))(nu)over-bar(tau) reactions. J. High Energy Phys., 04(4), 026–25pp.
Abstract: We study the d(2)Gamma(d)/(d omega d cos theta(d) ), d Gamma(d)/d cos theta(d) and d Gamma(d)/dE(d) distributions, which are defined in terms of the visible energy and polar angle of the charged particle from the tau-decay in b -> C tau (mu(nu) over bar (mu)nu(tau), pi nu(tau), rho nu(tau))(nu) over bar (tau), reactions. These differential decay widths could be measured in the near future with certain precision. The first two contain information on the transverse tau-spin, tau-angular and tau-angular-spin asymmetries of the H-b -> H-c tau(nu) over bar (tau) parent decay and, from a dynamical point of view, they are richer than the commonly used one, d(2)Gamma(d)/(d omega dE(d)), since the latter only depends on the tau longitudinal polarization. We pay attention to the deviations with respect to the predictions of the standard model (SM) for these new observables, considering new physics (NP) operators constructed using both right- and left-handed neutrino fields, within an effective field-theory approach. We present results for Lambda(b) -> Lambda(c)tau (mu(nu) over bar (mu)nu(tau), pi nu(tau), rho nu(tau))(nu) over bar (tau) and (B) over bar -> D-(*()) tau (mu(nu) over bar (mu)nu(tau), pi nu(tau), rho nu(tau))(nu) over bar (tau) sequential decays and discuss their use to disentangle between different NP models. In this respect, we show that d Gamma(d)/d cos theta(d) , which should be measured with sufficiently good statistics, becomes quite useful, especially in the tau -> pi nu(tau) mode. The study carried out in this work could be of special relevance due to the recent LHCb measurement of the lepton flavor universality ratio R Lambda(c) in agreement with the SM. The experiment identified the tau using its hadron decay into pi(-)pi(+)pi(-)nu(tau), and this result for R Lambda(c )which is in conflict with the phenomenology from the b-meson sector, needs confirmation from other tau reconstruction channels.
|
Penalva, N., Flynn, J. M., Hernandez, E., & Nieves, J. (2024). Study of new physics effects in (B)over-bars → Ds(*) τ-(ν)over-bar τ semileptonic decays using lattice QCD form factors and heavy quark effective theory. J. High Energy Phys., 01(1), 163–33pp.
Abstract: We benefit from the lattice QCD determination by the HPQCD of the Standard Model (SM) form factors for the (B) over bar (s) -> D-s [Phys. Rev. D101(2020) 074513] and the SM and tensor ones for the (B) over bar (s) -> D-s* (arXiv:2304.03137[hep-lat]) semileptonic decays, and the heavy quark effective theory (HQET) relations for the analogous B -> D-(*()) decays obtained by F.U. Bernlochner et al. in Phys. Rev. D95(2017) 115008, to extract the leading and sub-leading Isgur-Wise functions for the (B) over bar (s) -> D-s(()*()) decays. Further use of the HQET relations allows us to evaluate the corresponding scalar, pseudoscalar and tensor form factors needed for a phenomenological study of new physics (NP) effects on the (B) over bar (s) -> D-s(()*()) semileptonic decay. At present, the experimental values for the ratios R-D(*) = Gamma[ (B) over bar -> D-(*())(tau- (nu) over bar tau)]/Gamma[(B) over bar -> D-(*())e(-)(mu(-)) (nu) over bar (e(mu))]are the best signal in favor of lepton flavor universality violation (LFUV) seen in charged current (CC) b -> c decays. In this work we conduct a study of NP effects on the (B) over bar (s) -> D-s(()*()) tau(-)(tau) semileptonic decays by comparing tau spin, angular and spin-angular asymmetry distributions obtained within the SM and three different NP scenarios. As expected from SU(3) light-flavor symmetry, we get results close to the ones found in a similar analysis of the (B) over bar -> D-(*()) case. The measurement of the (B) over bar (s) -> D-s(()*())(l (nu) over bar tau) semileptonic decays, which is within reach of present experiments, could then be of relevance in helping to establish or rule out LFUV in CC b -> c transitions.
|
Pellumaj, J. et al, & Perez-Vidal, R. M. (2025). Investigating the collectivity of intruder states along N=49 isotones. Nucl. Phys. A, 1060, 123125–6pp.
Abstract: Intruder states that originate from the promotion of neutrons across the N=50 shell gap are observed along the N=49 isotones (79Zn, 81Ge, 83Se, 85Kr), with the lowest energy in 83Se. The reduction of the N=50 shell gap towards Ni favors the lowering in the energy of these states. Moreover, since the Se nucleus (Z=34) is in the middle of the proton fp-shell (28 <= Z <= 40), it should have the maximum quadrupole correlations, lowering further the energy of these deformed configurations. This makes Se a good candidate for understanding the collectivity of the particle-hole intruder states in this region. Such information could also be used as a testing ground for theoretical models aiming to describe the region in the vicinity of 78Ni. An experiment aiming to measure the lifetime of the 540-keV 1/2+ and 1100-keV 3/2+ intruder states of 83Se was performed at LNL and is reported in this work.
|
Peinado, E., Reig, M., Srivastava, R., & Valle, J. W. F. (2020). Dirac neutrinos from Peccei-Quinn symmetry: A fresh look at the axion. Mod. Phys. Lett. A, 35(21), 2050176–9pp.
Abstract: We show that a very simple solution to the strong CP problem naturally leads to Dirac neutrinos. Small effective neutrino masses emerge from a type-I Dirac seesaw mechanism. Neutrino mass limits probe the axion parameters in regions currently inaccessible to conventional searches.
|
Pedersen, L. G. et al, & Morales, A. I. (2023). First spectroscopic study of odd-odd 78Cu. Phys. Rev. C, 107(4), 044301–10pp.
Abstract: Nuclei in the vicinity of 78Ni are important benchmarks for nuclear structure, which can reveal changes in the shell structure far from stability. Spectroscopy of the odd-odd isotope 78Cu was performed for the first time in an experiment with the EURICA setup at the Radioactive Isotope Beam Factory at RIKEN Nishina Center. Excited states in the neutron-rich isotope were populated following the beta decay of 78Ni produced by in-flight fission and and separated by the BigRIPS separator. A level scheme based on the analysis of γ−γ coincidences is presented. Tentative spin and parity assignments were made when possible based on the β-decay feeding intensities and γ-decay properties of the excited states. Time correlations between β and γ decay show clear indications of an isomeric state with a half-life of 3.8(4) ms. Large-scale Monte Carlo shell-model calculations were performed using the A3DA-m interaction and a valence space comprising the full fp shell and the 1g9/2 and 2d5/2 orbitals for both protons and neutrons. The comparison of the experimental results with the shell-model calculations allows interpreting the excited states in terms of spin multiplets arising from the proton-neutron interaction. The results provide further insight into the evolution of the proton single-particle orbitals as a function of neutron number, and quantitative information about the proton-neutron interaction outside the doubly magic 78Ni core.
|
Paxman, C. J. et al, Domingo-Pardo, C., Gadea, A., Perez-Vidal, R. M., & Valiente-Dobon, J. J. (2025). Probing Exotic Cross-Shell Interactions at N=28 with Single-Neutron Transfer on 47K. Phys. Rev. Lett., 134(16), 162504–8pp.
Abstract: We present the first measurement of the 47K(d, p gamma)48K transfer reaction, performed in inverse kinematics using a reaccelerated beam of 47K. The level scheme of 48K has been greatly extended, with nine new bound excited states identified and spectroscopic factors deduced. Uniquely, the 47K(d, p) reaction gives access to nuclear states that are sensitive to the interaction of protons and neutrons in the widely spaced 1s and fp orbitals, respectively. Detailed comparisons with SDPF-U and SDPF-MU shell-model calculations reveal a number of discrepancies between theory and experiment. Intriguingly, a systematic overestimation of spectroscopic factors and a poor reproduction of the energies for 1- states suggests that the mixing between the pi s11/2d43/2 and pi s21/2d33/2 proton configurations in 48K is not correctly described using current interactions, challenging our description of light nuclei around the N = 28 island of inversion.
|
Pavao, R. P., Sakai, S., & Oset, E. (2017). Triangle singularities in B- -> D*(0)pi(-)pi(0)eta and B- -> D*(0)pi(-)pi(+)pi(-). Eur. Phys. J. C, 77(9), 599–8pp.
Abstract: The possible role of the triangle mechanism in the B- decay into D*(0)pi(-)pi(0)eta and D*(0)pi(-)pi(+)pi(-) is investigated. In this process, the triangle singularity appears from the decay of B- into D*K-0(-) K*(0) followed by the decay of K-*0 into pi(-) K+ and the fusion of the K+ K-, which forms the a(0)(980) or f(0)(980), which finally decay into pi(0)eta or pi(+)pi(-), respectively. The triangle mechanism from the (K) over bar * K (K) over bar loop generates a peak around 1420 MeV in the invariant mass of pi(-) a(0) or pi(-) f(0), and it gives sizable branching fractions, Br(B- -> D*(0)pi(-) a(0); a(0) -> pi(0)eta) = (1.66 +/- 0.45) x 10(-6) and Br(B- -> D*(0)pi(-) f(0); f(0) -> pi(+)pi(-)) = (2.82 +/- 0.75) x 10(-6).
|