Etxebeste, A., Barrio, J., Bernabeu, J., Lacasta, C., Llosa, G., Muñoz, E., et al. (2019). Study of sensitivity and resolution for full ring PET prototypes based on continuous crystals and analytical modeling of the light distribution. Phys. Med. Biol., 64(3), 035015–17pp.
Abstract: Sensitivity and spatial resolution are the main parameters to maximize in the performance of a PET scanner. For this purpose, detectors consisting of a combination of continuous crystals optically coupled to segmented photodetectors have been employed. With the use of continuous crystals the sensitivity is increased with respect to the pixelated crystals. In addition, spatial resolution is no longer limited to the crystal size. The main drawback is the difficulty in determining the interaction position. In this work, we present the characterization of the performance of a full ring based on cuboid continuous crystals coupled to SiPMs. To this end, we have employed the simulations developed in a previous work for our experimental detector head. Sensitivity could be further enhanced by using tapered crystals. This enhancement is obtained by increasing the solid angle coverage, reducing the wedge-shaped gaps between contiguous detectors. The performance of the scanners based on both crystal geometries was characterized following NEMA NU 4-2008 standardized protocol in order to compare them. An average sensitivity gain over the entire axial field of view of 13.63% has been obtained with tapered geometry while similar performance of the spatial resolution has been proven with both scanners. The activity at which NECR and true peak occur is smaller and the peak value is greater for tapered crystals than for cuboid crystals. Moreover, a higher degree of homogeneity was obtained in the sensitivity map due to the tighter packing of the crystals, which reduces the gaps and results in a better recovery of homogeneous regions than for the cuboid configuration. Some of the results obtained, such as spatial resolution, depend on the interaction position estimation and may vary if other method is employed.
|
Escrig, S. et al, Bernabeu, J., Lacasta, C., & Solaz, C. (2024). First test of energy response of the micro-vertex detection system for the WASA-FRS Experiments. Nucl. Instrum. Methods Phys. Res. A, 1064, 169392–4pp.
Abstract: The hypernuclei, which are nuclei that contain the quark s, have been studied for more than 50 years. Notwithstanding, the recent experiments using high-energy heavy-ion induced reactions have challenged their current understanding. The high multiplicity of particles generated in the reaction allows for the measurement of the interaction point of the primary beam with the target. Then, a micro-vertex detection system for the WASA-FRS Experiments has been developed. Several experimental tests have been performed with Sr-90 and Bi-207 beta sources and a 10-MeV proton beam at the CMAM tandem accelerator, and their results are reported.
|
Diez, S. et al, Bernabeu Verdu, J., Civera, J. V., Garcia, C., Garcia-Argos, C., Lacasta, C., et al. (2014). A double-sided, shield-less stave prototype for the ATLAS Upgrade strip tracker for the High Luminosity LHC. J. Instrum., 9, P03012–16pp.
Abstract: A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools.
|
DEPFET collaboration(Alonso, O. et al), Boronat, M., Esperante-Pereira, D., Fuster, J., Garcia, I. G., Lacasta, C., et al. (2013). DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider. IEEE Trans. Nucl. Sci., 60(2), 1457–1465.
Abstract: The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 μm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling, and services. In this paper, the status of the DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e(+)e(-) collider.
|
Decoster, S., Cottenier, S., Wahl, U., Correia, J. G., Pereira, L. M. C., Lacasta, C., et al. (2010). Diluted manganese on the bond-centered site in germanium. Appl. Phys. Lett., 97(15), 151914–3pp.
Abstract: The functional properties of Mn-doped Ge depend to large extent on the lattice location of the Mn impurities. Here, we present a lattice location study of implanted diluted Mn by means of electron emission channeling. Surprisingly, in addition to the expected substitutional lattice position, a large fraction of the Mn impurities occupies the bond-centered site. Corroborated by ab initio calculations, the bond-centered Mn is related to Mn-vacancy complexes. These unexpected results call for a reassessment of the theoretical studies on the electrical and magnetic behavior of Mn-doped Ge, hereby including the possible role of Mn-vacancy complexes.
|