|   | 
Details
   web
Records
Author (down) PANDA Collaboration (Singh, B. et al); Diaz, J.
Title Technical design report for the (P)over-barANDA Barrel DIRC detector Type Journal Article
Year 2019 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 46 Issue 4 Pages 045001 - 155pp
Keywords particle identification; ring imaging Cherenkov detector; DIRC counter; PANDA experiment; hadron physics
Abstract The (P) over bar ANDA (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. (P) over bar ANDA will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 x 10(32) cm(-2) S-1. Excellent particle identification (PID) is crucial to the success of the (P) over bar ANDA physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22 degrees to 140 degrees and will provide at least 3 standard deviations (s.d.) pi/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the (P) over bar ANDA Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean pi/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC.
Address [Singh, B.] Aligarth Muslim Univ, Phys Dept, Aligarh, India, Email: j.schwiening@gsi.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000460153900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3930
Permanent link to this record
 

 
Author (down) Pallis, C.
Title Linking Starobinsky-type inflation in no-scale supergravity to MSSM Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 024 - 31pp
Keywords particle physics – cosmology connection; supersymmetry and cosmology; cosmology of theories beyond the SM; inflation
Abstract A novel realization of the Starobinsky inflationary model within a moderate extension of the Minimal Supersymmetric Standard Model (MSSM) is presented. The proposed superpotential is uniquely determined by applying a continuous R and a Z2 discrete symmetry, whereas the Kahler potential is associated with a no-scale-type SU(54, 1)/ SU(54) x U(1) R X Z2 Kahler manifold. The inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling (with a parameter CT involved) between the inflaton and the Ricci scalar curvature, inflation can be attained even for subplanckian values of the inflaton with CT >= 76 and the corresponding effective theory being valid up to the Planck scale. The inflationary observables turn out to be in agreement with the current data and the inflaton mass is predicted to be 3 10(3) GeV. At the cost of a relatively small superpotential coupling constant, the model offers also a resolution of the f,t problem of MSSM for CT <= 4500 and gravitino heavier than about 10(4) GeV. Supplementing MSSM by three right-handed neutrinos we show that spontaneously arising couplings between the inflaton and the particle content of MSSM not only ensure a sufficiently low reheating temperature but also support a scenario of non-thermal leptogenesis consistently with the neutrino oscillation parameters.
Address [Pallis, C.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: kpallis@auth.gr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000343042800006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1961
Permanent link to this record
 

 
Author (down) Oliver, S.; Rodriguez Bosca, S.; Gimenez-Alventosa, V.
Title Enabling particle transport on CAD-based geometries for radiation simulations with penRed Type Journal Article
Year 2024 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 298 Issue Pages 109091 - 11pp
Keywords Radiation transport; PENELOPE physics; Monte Carlo simulation; PenRed; CAD; Triangular surface mesh
Abstract Geometry construction is a fundamental aspect of any radiation transport simulation, regardless of the Monte Carlo code being used. Typically, this process is tedious, time-consuming, and error-prone. The conventional approach involves defining geometries using mathematical objects or surfaces. However, this method comes with several limitations, especially when dealing with complex models, particularly those with organic shapes. Furthermore, since each code employs its own format and methodology for defining geometries, sharing and reproducing simulations among researchers becomes a challenging task. Consequently, many codes have implemented support for simulating over geometries constructed via Computer-Aided Design (CAD) tools. Unfortunately, this feature is lacking in penRed and other PENELOPE physics-based codes. Therefore, the objective of this work is to implement such support within the penRed framework. New version program summary Program Title: Parallel Engine for Radiation Energy Deposition (penRed) CPC Library link to program files: https://doi.org/10.17632/rkw6tvtngy.2 Developer's repository link: https://github.com/PenRed/PenRed Code Ocean capsule: https://codeocean.com/capsule/1041417/tree Licensing provisions: GNU Affero General Public License v3 Programming language: C++ standard 2011. Journal reference of previous version: V. Gimenez-Alventosa, V. Gimenez Gomez, S. Oliver, PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE, Computer Physics Communications 267 (2021) 108065. doi:https://doi.org/10.1016/j.cpc.2021.108065. Does the new version supersede the previous version?: Yes Reasons for the new version: Implements the capability to simulate on CAD constructed geometries, among many other features and fixes. Summary of revisions: All changes applied through the code versions are summarized in the file CHANGELOG.md in the repository package. Nature of problem: While Monte Carlo codes have proven valuable in simulating complex radiation scenarios, they rely heavily on accurate geometrical representations. In the same way as many other Monte Carlo codes, penRed employs simple geometric quadric surfaces like planes, spheres and cylinders to define geometries. However, since these geometric models offer a certain level of flexibility, these representations have limitations when it comes to simulating highly intricate and irregular shapes. Anatomic structures, for example, require detailed representations of organs, tissues and bones, which are difficult to achieve using basic geometric objects. Similarly, complex devices or intricate mechanical systems may have designs that cannot be accurately represented within the constraints of such geometric models. Moreover, when the complexity of the model increases, geometry construction process becomes more difficult, tedious, time-consuming and error-prone [2]. Also, as each Monte Carlo geometry library uses its own format and construction method, reproducing the same geometry among different codes is a challenging task. Solution method: To face the problems stated above, the objective of this work is to implement the capability to simulate using irregular and adaptable meshed geometries in the penRed framework. This kind of meshes can be constructed using Computer-Aided Design (CAD) tools, the use of which is very widespread and streamline the design process. This feature has been implemented in a new geometry module named “MESH_BODY” specific for this kind of geometries. This one is freely available and usable within the official penRed package1. It can be used since penRed version 1.9.3b and above.
Address [Oliver, S.] Univ Politecn Valencia, Inst Seguridad Ind Radiofis & Medioambiental ISIRY, Cami Vera S-N, Valencia 46022, Spain
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:001172840800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6077
Permanent link to this record
 

 
Author (down) Oliver, S.; Gimenez-Alventosa, V.; Berumen, F.; Gimenez, V.; Beaulieu, L.; Ballester, F.; Vijande, J.
Title Benchmark of the PenRed Monte Carlo framework for HDR brachytherapy Type Journal Article
Year 2023 Publication Zeitschrift für Medizinische Physik Abbreviated Journal Z. Med. Phys.
Volume 33 Issue 4 Pages 511-528
Keywords Monte Carlo; PenRed; Brachytherapy; DICOM; Medical physics
Abstract Purpose: The purpose of this study is to validate the PenRed Monte Carlo framework for clinical applications in brachytherapy. PenRed is a C++ version of Penelope Monte Carlo code with additional tallies and utilities. Methods and materials: Six benchmarking scenarios are explored to validate the use of PenRed and its improved bachytherapy-oriented capabilities for HDR brachytherapy. A new tally allowing the evaluation of collisional kerma for any material using the track length kerma estimator and the possibility to obtain the seed positions, weights and directions processing directly the DICOM file are now implemented in the PenRed distribution. The four non-clinical test cases developed by the Joint AAPM-ESTRO-ABG-ABS WG-DCAB were evaluated by comparing local and global absorbed dose differences with respect to established reference datasets. A prostate and a palliative lung cases, were also studied. For them, absorbed dose ratios, global absorbed dose differences, and cumulative dose-volume histograms were obtained and discussed. Results: The air-kerma strength and the dose rate constant corresponding to the two sources agree with the reference datatests within 0.3% (Sk) and 0.1% (K). With respect to the first three WG-DCAB test cases, more than 99.8% of the voxels present local (global) differences within +/- 1%(+/- 0.1%) of the reference datasets. For test Case 4 reference dataset, more than 94.9%(97.5%) of voxels show an agreement within +/- 1%(+/- 0.1%), better than similar benchmarking calculations in the literature. The track length kerma estimator scorer implemented increases the numerical efficiency of brachytherapy calculations two orders of magnitude, while the specific brachytherapy source allows the user to avoid the use of error-prone intermediate steps to translate the DICOM information into the simulation. In both clinical cases, only minor absorbed dose differences arise in the low-dose isodoses. 99.8% and 100% of the voxels have a global absorbed dose difference ratio within +/- 0.2%for the prostate and lung cases, respectively. The role played by the different segmentation and composition material in the bone structures was discussed, obtaining negligible absorbed dose differ-ences. Dose-volume histograms were in agreement with the reference data.Conclusions: PenRed incorporates new tallies and utilities and has been validated for its use for detailed and precise high-dose-rate brachytherapy simulations.
Address [Oliver, S.] Univ Politecn Valencia, Inst Segur Ind, Radiofis & Medioambiental ISIRYM, Camide Vera s n, Valencia 46022, Spain, Email: sanolgi@upvnet.upv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0939-3889 ISBN Medium
Area Expedition Conference
Notes WOS:001137118400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5885
Permanent link to this record
 

 
Author (down) Oliveira, C.A.B.; Sorel, M.; Martin-Albo, J.; Gomez-Cadenas, J.J.; Ferreira, A.L.; Veloso, J.F.C.A.
Title Energy resolution studies for NEXT Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages P05007 - 13pp
Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission etc); Large detector systems for particle and astroparticle physics; Time projection chambers
Abstract This work aims to present the current state of simulations of electroluminescence (EL) produced in gas-based detectors with special interest for NEXT – Neutrino Experiment with a Xenon TPC. NEXT is a neutrinoless double beta decay experiment, thus needs outstanding energy resolution which can be achieved by using electroluminescence. The process of light production is reviewed and properties such as EL yield and associated fluctuations, excitation and electroluminescence efficiencies, and energy resolution, are calculated. An EL production region with a 5 mm width gap between two infinite parallel planes is considered, where a uniform electric field is produced. The pressure and temperature considered are 10 bar and 293 K, respectively. The results show that, even for low values of VUV photon detection efficiency, good energy resolution can be achieved: below 0.4% (FWHM) at Q(beta beta) = 2.458 MeV.
Address [Oliveira, CAB; Ferreira, AL; Veloso, JFCA] Univ Aveiro, Dept Phys, i3N, P-3810193 Aveiro, Portugal, Email: carlos.oliveira@ua.pt
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000294491900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 747
Permanent link to this record