|   | 
Details
   web
Records
Author (down) n_TOF Collaboration (Tarrío, D. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title Neutron-induced fission cross sections of Th-232 and U-233 up to 1 GeV using parallel plate avalanche counters at the CERN n_TOF facility Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 4 Pages 044616 - 21pp
Keywords
Abstract The neutron-induced fission cross sections of Th-232 and U-233 were measured relative to U-235 in a wide neutron energy range up to 1 GeV (and from fission threshold in the case of Th-232, and from 0.7 eV in case of U-233), using the white-spectrum neutron source at the CERN Neutron Time-of-Flight (nTOF) facility. Parallel plate avalanche counters (PPACs) were used, installed at the Experimental Area 1 (EAR1), which is located at 185 m from the neutron spallation target. The anisotropic emission of fission fragments were taken into account in the detection efficiency by using, in the case of U-233, previous results available in EXFOR, whereas in the case of Th-232 these data were obtained from our measurement, using PPACs and targets tilted 45 degrees with respect to the neutron beam direction. Finally, the obtained results are compared with past measurements and major evaluated nuclear data libraries. Calculations using the high-energy reaction models INCL++ and ABLA07 were performed and some of their parameters were modified to reproduce the experimental results. At high energies, where no other neutron data exist, our results are compared with experimental data on proton-induced fission. Moreover, the dependence of the fission cross section at 1 GeV with the fissility parameter of the target nucleus is studied by combining those ( p, f) data with our (n, f) data on Th-232 and U-233 and on other isotopes studied earlier at nTOF using the same experimental setup.
Address [Tarrio, D.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden, Email: diego.tarrio@physics.uu.se
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001021341000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5618
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Tagliente, G. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Zr-92(n, gamma) and (n,tot) measurements at the GELINA and n_TOF facilities Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 105 Issue 2 Pages 025805 - 14pp
Keywords
Abstract Background: Stellar nucleosynthesis of elements heavier than iron is driven by neutron capture processes. Zr-92 is positioned at a strategic point along the slow nucleosynthesis path, given its proximity to the neutron magic number N = 50 and its position at the matching region between the weak and main slow processes. Purpose: In parallel with recent improved astronomical data, the extraction of accurate Maxwellian averaged cross sections (MACSs) derived from a more complete and accurate set of resonance parameters should allow for a better understanding of the stellar conditions at which nucleosynthesis takes place. Methods: Transmission and capture cross section measurements using enriched Zr-92 metallic samples were performed at the time-of flight facilities GELINA of JRC-Geel (BE) and nTOF of CERN (CH). The neutron beam passing through the samples was investigated in transmission measurements at GELINA using a Li-glass scintillator. The gamma rays emitted during the neutron capture reactions were detected by C6D6 detectors at both GELINA and nTOF. Results: Resonance parameters of individual resonances up to 81 keV were extracted from a combined resonance shape analysis of experimental transmissions and capture yields. For the majority of the resonances the parity was determined from an analysis of the transmission data obtained with different sample thicknesses. Average resonance parameters were calculated. Conclusions: Maxwellian averaged cross sections were extracted from resonances observed up to 81 keV. The MACS for kT = 30 keV is fully consistent with experimental data reported in the literature. The MACSs for kT less than or similar to 15 keV are in good agreement with those derived from the ENDF/B-VIII.0 library and recommended in the KADoNTS database. For kT higher than 30 keV differences are observed. A comparison with MACSs obtained with the cross sections recommended in the JEFF-3.3 and JENDL-4.0 libraries shows discrepancies even for kT less than or similar to 15 keV.
Address [Tagliente, G.; Barbagallo, M.; Colonna, N.; Mastromarco, M.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: giuseppe.tagliente@ba.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000766732800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5163
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Stamatopoulos, A. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Investigation of the Pu-240(n, f) reaction at the n_TOF/EAR2 facility in the 9 meV-6 MeV range Type Journal Article
Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 102 Issue 1 Pages 014616 - 23pp
Keywords
Abstract Background: Nuclear waste management is considered amongst the major challenges in the field of nuclear energy. A possible means of addressing this issue is waste transmutation in advanced nuclear systems, whose operation requires a fast neutron spectrum. In this regard, the accurate knowledge of neutron-induced reaction cross sections of several (minor) actinide isotopes is essential for design optimization and improvement of safety margins of such systems. One such case is Pu-240, due to its accumulation in spent nuclear fuel of thermal reactors and its usage in fast reactor fuel. The measurement of the Pu-240(n, f) cross section was previously attempted at the CERN nTOF facility EAR1 measuring station using the time-of-flight technique. Due to the low amount of available material and the given flux at EAR1, the measurement had to last several months to achieve a sufficient statistical accuracy. This long duration led to detector deterioration due to the prolonged exposure to the high alpha activity of the fission foils, therefore the measurement could not be successfully completed. Purpose: It is aimed to determine whether it is feasible to study neutron-induced fission at nTOF/EAR2 and provide data on the Pu-240(n, f) reaction in energy regions requested for applications. Methods: The study of the Pu-240(n, f) reaction was made at a new experimental area (EAR2) with a shorter flight path which delivered on average 30 times higher flux at fast neutron energies. This enabled the measurement to be performed much faster, thus limiting the exposure of the detectors to the intrinsic activity of the fission foils. The experimental setup was based on microbulk Micromegas detectors and the time-of-flight data were analyzed with an optimized pulse-shape analysis algorithm. Special attention was dedicated to the estimation of the non-negligible counting loss corrections with the development of a new methodology, and other corrections were estimated via Monte Carlo simulations of the experimental setup. Results: This new measurement of the Pu-240(n, f) cross section yielded data from 9 meV up to 6 MeV incident neutron energy and fission resonance kernels were extracted up to 10 keV. Conclusions: Neutron-induced fission of high activity samples can be successfully studied at the n_TOF/EAR2 facility at CERN covering a wide range of neutron energies, from thermal to a few MeV.
Address [Stamatopoulos, A.; Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Diakaki, M.] Natl Tech Univ Athens, Athens, Greece, Email: athanasios.stamatopoulos@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000551057500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4466
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Sosnin, N.V. et al.); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Measurement of the 77Se(n,gamma) cross section up to 200 keV at the n_TOF facility at CERN Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 6 Pages 065805 - 9pp
Keywords
Abstract The 77Se(n,gamma) reaction is of importance for 77Se abundance during the slow neutron capture process in massive stars. We have performed a new measurement of the 77Se radiative neutron capture cross section at the Neutron Time-of-Flight facility at CERN. Resonance capture kernels were derived up to 51 keV and cross sections up to 200 keV. Maxwellian-averaged cross sections were calculated for stellar temperatures between kT = 5 keV and kT = 100 keV, with uncertainties between 4.2% and 5.7%. Our results lead to substantial decreases of 14% and 19% in 77Se abundances produced through the slow neutron capture process in selected stellar models of 15M0 and 2M0, respectively, compared to using previous recommendation of the cross section.
Address [V. Sosnin, N.; Lederer-Woods, C.; Garg, R.; Dietz, M.; Murphy, A. St. J.; Lonsdale, S.; Woods, P. J.] Univ Edinburgh, Sch Phys & Astron, Edinburgh, Scotland, Email: nsosnin@ed.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001023903800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5599
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Patronis, N. et al); Babiano-Suarez, V.; Balibrea Correa, J.; Domingo-Pardo, C.; Ladarescu, I.; Lerendegui-Marco, J.
Title Status report of the n_TOF facility after the 2nd CERN long shutdown period Type Journal Article
Year 2023 Publication EPJ Techniques and Instrumentation Abbreviated Journal EPJ Tech. Instrum.
Volume 10 Issue 1 Pages 13 - 10pp
Keywords Neutron time of flight; Spallation target; Nuclear astrophysics; Neutron physics; Neutron induced fission; Neutron reactions
Abstract During the second long shutdown period of the CERN accelerator complex (LS2, 2019-2021), several upgrade activities took place at the nTOF facility. The most important have been the replacement of the spallation target with a next generation nitrogen-cooled lead target. Additionally, a new experimental area, at a very short distance from the target assembly (the NEAR Station) was established. In this paper, the core commissioning actions of the new installations are described. The improvement in the nTOF infrastructure was accompanied by several detector development projects. All these upgrade actions are discussed, focusing mostly on the future perspectives of the n_TOF facility. Furthermore, some indicative current and future measurements are briefly reported.
Address [Patronis, N.; Goula, S.; Eleme, Z.; Stamati, M. E.; Vagena, E.] Univ Ioannina, Ioannina, Greece, Email: nikolaos.patronis@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2195-7045 ISBN Medium
Area Expedition Conference
Notes WOS:001008786600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5591
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Moreno-Soto, J. et al); Babiano-Suarez, V.; Caballero-Ontanaya, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Constraints on the dipole photon strength for the odd uranium isotopes Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 105 Issue 2 Pages 024618 - 14pp
Keywords
Abstract Background: The photon strength functions (PSFs) and nuclear level density (NLD) are key ingredients for calculation of the photon interaction with nuclei, in particular the reaction cross sections. These cross sections are important especially in nuclear astrophysics and in the development of advanced nuclear technologies. Purpose: The role of the scissors mode in the M1 PSF of (well-deformed) actinides was investigated by several experimental techniques. The analyses of different experiments result in significant differences, especially on the strength of the mode. The shape of the low-energy tail of the giant electric dipole resonance is uncertain as well. In particular, some works proposed a presence of the E1 pygmy resonance just above 7 MeV. Because of these inconsistencies additional information on PSFs in this region is of great interest. Methods: The gamma-ray spectra from neutron-capture reactions on the U-234, U-236, and U-238 nuclei have been measured with the total absorption calorimeter of the n_TOF facility at CERN. The background-corrected sum-energy and multi-step-cascade spectra were extracted for several isolated s-wave resonances up to about 140 eV. Results: The experimental spectra were compared to statistical model predictions coming from a large selection of models of photon strength functions and nuclear level density. No combination of PSF and NLD models from literature is able to globally describe our spectra. After extensive search we were able to find model combinations with modified generalized Lorentzian (MGLO) E1 PSF, which match the experimental spectra as well as the total radiative widths. Conclusions: The constant temperature energy dependence is favored for a NLD. The tail of giant electric dipole resonance is well described by the MGLO model of the E1 PSF with no hint of pygmy resonance. The M1 PSF must contain a very strong, relatively wide, and likely double-resonance scissors mode. The mode is responsible for about a half of the total radiative width of neutron resonances and significantly affects the radiative cross section.
Address [Moreno-Soto, J.; Berthoumieux, E.; Dupont, E.; Gunsing, F.; Bacak, M.] Univ Paris Saclay, CEA Irfu, F-91191 Gif Sur Yvette, France, Email: jmoreno53@us.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000810791100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5278
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Michalopoulou, V. et al); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Measurement of the neutron-induced fission cross section of Th-230 at the CERN n_TOF facility Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 1 Pages 014616 - 15pp
Keywords
Abstract The neutron-induced fission cross section of Th-230 has been measured at the neutron time-of-flight facility n_TOF located at CERN. The experiment was performed at the experimental area EAR-1 with a neutron flight path of 185 m, using Micromegas detectors for the detection of the fission fragments. The Th-230(n, f ) cross section was determined relative to the U-235(n, f ) one, covering the energy range from the fission threshold up to 400 MeV. The results from the present work are compared with existing cross-section datasets and the observed discrepancies are discussed and analyzed. Finally, using the code EMPIRE 3.2.3 a theoretical study, based on the statistical model, was performed leading to a satisfactory reproduction of the experimental results with the proper tuning of the respective parameters, while for incident neutron energy beyond 200 MeV the fission of( 230)Th was described by Monte Carlo simulations.
Address [Michalopoulou, V; Stamatopoulos, A.; Diakaki, M.; Vlastou, R.; Kokkoris, M.; Tassan-Got, L.] Natl Tech Univ Athens, Dept Phys, Zografou Campus, Athens, Greece, Email: veatriki.michalopoulou@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001063908000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5700
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Mazzone, A. et al); Babiano-Suarez, V; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I; Tain, J.L.
Title Measurement of the Gd-154(n, gamma) cross section and its astrophysical implications Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 804 Issue Pages 135405 - 6pp
Keywords s process; Gd-154; Neutron time of flight; n_TOF
Abstract The neutron capture cross section of Gd-154 was measured from 1 eV to 300 keV in the experimental area located 185 m from the CERN n_TOF neutron spallation source, using a metallic sample of gadolinium, enriched to 67% in Gd-154. The capture measurement, performed with four C6D6 scintillation detectors, has been complemented by a transmission measurement performed at the GELINA time-of-flight facility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averaged capture cross section (MACS) was deduced over the temperature range of interest for s process nucleosynthesis modelling. We report a value of 880(50) mb for the MACS at kT = 30 keV, significantly lower compared to values available in literature. The new adopted Gd-154(n, gamma) cross section reduces the discrepancy between observed and calculated solar s-only isotopic abundances predicted by s-process nucleosynthesis models.
Address [Mazzone, A.; Barbagallo, M.; Colonna, N.; Damone, L. A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Bari, Italy, Email: Cristian.Massimi@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000548740300022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4464
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Mastromarco, M. et al); Domingo-Pardo, C.; Tain, J.L.
Title High accuracy, high resolution U-235(n,f) cross section from n_TOF (CERN) from 18 meV to 10 keV Type Journal Article
Year 2022 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 58 Issue 8 Pages 147 - 13pp
Keywords
Abstract The U-235(n,f) cross section was measured in a wide energy range (18 meV-170 keV) at the nTOF facility at CERN, relative to Li-6(n,t) and B-10(n,alpha) standard reactions, with high resolution and accuracy, with a setup based on a stack of six samples and six silicon detectors placed in the neutron beam. In this paper we report on the results in the region between 18 meV and 10 keV neutron energy. A resonance analysis has been performed up to 200 eV, with the code SAMMY. The resulting fission kernels are compared with the ones extracted on the basis of the resonance parameters of the most recent major evaluated data libraries. A comparison of the nTOF data with the evaluated cross sections is also performed from thermal to 10 keV neutron energy for the energy-averaged cross section in energy groups of suitably chosen width. A good agreement, within 0.5%, is found on average between the new results and the latest evaluated data files ENDF/B-VIII.0 and JEFF-3.3, as well as with respect to the broad group average fission cross section established in the framework of the standard working group of IAEA (the so-called reference file). However, some discrepancies, of up to 4%, are still present in some specific energy regions. The new dataset here presented, characterized by a unique combination of high resolution and accuracy, low background and wide energy range, can help to improve the evaluations from the Resolved Resonance Region up to 10 keV, also reducing the uncertainties that affect this region.
Address [Mastromarco, M.; Colonna, N.; Diacono, D.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: amaducci@lns.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000840312100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5328
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Lederer-Woods, C. et al.); Domingo-Pardo, C.; Tain, J.L.
Title Destruction of the cosmic gamma-ray emitter Al-26 in massive stars: Study of the key Al-26(n, p) reaction Type Journal Article
Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 104 Issue 2 Pages L022803 - 7pp
Keywords
Abstract The Al-26(n, p) Mg-26 reaction is the key reaction impacting on the abundances of the cosmic gamma-ray emitter Al-26 produced in massive stars and impacts on the potential pollution of the early solar system with Al-26 by asymptotic giant branch stars. We performed a measurement of the Al-26(n, p) Mg-26 cross section at the high-flux beam line EAR-2 at the n_TOF facility (CERN). We report resonance strengths for eleven resonances, nine being measured for the first time, while there is only one previous measurement for the other two. Our resonance strengths are significantly lower than the only previous values available. Our cross-section data range to 150 keV neutron energy, which is sufficient for a reliable determination of astrophysical reactivities up to 0.5 GK stellar temperature.
Address [Lederer-Woods, C.; Woods, P. J.; Davinson, T.; Kahl, D.; Lonsdale, S. J.] Univ Edinburgh, Sch Phys & Astron, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland, Email: claudia.lederer-woods@ed.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000691442700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4949
Permanent link to this record